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V

Introduction

SECTION I: HISTORICAL CONTEXT

The field of artificial intelligence may, at first glance, appear remote

and even irrelevant to the practical concerns of school teachers and

administrators. At a time when school budgets are already stretched to the

limit and the great majority of teachers are only now beginning to assimilate

the relatively simple technology of 6502-based microcomputers into the

conventional curriculum, it may seem preposterous to suggest that AI, much of

it still in the early stages of basic research, and notorious for its need of

expensive and powerful machines, has anything of practical value to offer
1.

educators either at present or in the near future. Yet, it is our belief that

work in artificial intelligence, both that which stresses the "artificial"

(i.e., the development of machines which assist humans in the performance of a

variety of problem-solving tasks) and that which focuses on "intelligence"

(i.e., the exploration of human cognition, memory, and problem-solving

behavior), has profound implications for the educational process. AI-based

instructional programs, so-called intelligent tutors or coaches, have already

been developed in some areas of the school curriculum, most notably in

mathematics.

But it is the search for a deeper and more accurate understanding of how

the mind works, the research on human intelligence, which promises the

greatest dividends for education. Artificial intelligence offers an arena in

'..

which to test theories of mind. Simplistic models of how people store and
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recall information or go about-solving problems, for example, will no longer

suffice; a researcher attempting to use an inadequate theory to write a

program will run into problems which he or she will be unable to resolve

without first revising that theory. As Schank and Hunter (1985) suggest,

"that's why we need to write programs. Programming forces us to be explicit,

and being explicit forces us to confront the problems with our theories."

This sustained effort at building detailed process models of human cognition

will perhaps prove to be AI's greatest contribution. In education, in

particular, a better understanding of how people learn and solve problems, as

well as a better grasp of what constitutes effective teaching, may turn out to

be a far more significant outcome of -Al research than any instructional

program.

After more than a quarter of century of research and development, the

field-of artificial intelligence remains something of a mystery. Discussions

about the educational uses of AI, in particular, have been afflicted with

vague statements about the technology's potential, and with the kind of hype

that had once accompanied the introduction of educational television and the

,first.wave of computer-assisted instruction. One possible explanation for

this state of affairs is that so few educational applications of AI have moved

beyond the research laboratory.

Nonetheless, the moment seems ripe for an examination of AI and its

educational applications. We already understand a great deal both about the

design of expert systemsthe representation of human expertise in a computer

program--and about human cognition. In addition, a significant number of

Intelligent Computer-Assisted Instructional (ICAI) systems have already been

developed, which makes comparison and evaluation of these systems possible.

We define AI in the conventional manner, as "the branch of computer

2
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science devoted to programming computers to carry out tasks that if carried

out by human beings would require intelligence" (Graham, 1979). AI techniques

are now being used for a broad range of tasks: problem-solving; natural

language processing; perception and pattern recognition; information storage

and retrieval; control of robots; game playing; automatic programming; and

computational logic. ICAI systems make use of a number of these capabilities.

Existing tutoring programs are able--in a limited way--to generate and solve

problems, store and retrieve data, play games, diagnose student

misconceptions, select appropriate teaching strategies, and carry out a

natural-language dialogue with a student.

This paper has four major aims:

o to provide a description of ICAI systems and their components;

o to examine recent developments in ICAI research;

o to evaluate the potential impact of ICAI for school practice and for our

understanding of learning and teaching; and

o to serve as a basis for discussions among educators, researchers, and
policy makers regarding the uses of ICAI in schools.

Historical Context

If there is a major theme in the history of computer-based instruction,

it is the trend from the rigid behaviorism of traditional CAI toward the more

learner-oriented, cognitive approach of current ICAI (O'Shea & Self, 1983).

Programs based on Skinnerian priiciples of operant conditioning have given way

to tutoring systems that are sensitive to individual differences among

students. In one important respect, however, both old and new CAI are driven

3



by the same vision: to provide effective instruction by utilizing the

computer's capacity for immediate feedback and individualization.

The paper focuses on only one of three major educational applications of

AI research. Indeed, ICAI is the least well known and the least widely used

of these three approaches. One strategy, exemplified by LOGO, provides

students with an environment in which they can explore a variety of

programming strategies. The theory underlying this "learning by doing"

approach is that students develop general problem-solving skills by being

invi,lved in programming; it is the activity of programming, rather than the

spt_if::: subject of the program, that is the central focus of this approach.

Drawing its inspiration from the ideas of Piaget, this strategy stands in

direct opposition to classical CAI and its behaviorist assumptions.

The second approach uses games and simulations as instructional tools.

As in LOGO, students are provided with.a microworld in which they are expected

to exercise their knowledge or skills, but here the instructional environment

is more constrained: its limits are defined by the subject matter of the

specific game or simulation. The approach is based on the theory that

students gain an understanding of mathematical or scientific principles not by

memorizing a body of knowledge, but by participating in a computer-based

activity--say, a simulated prey-predator experiment. Participation typically

involves manipulating a set of variables and observing their effect on a

simulated real-world system (in this example, the relationship between prey

and predator populations).

Unlike the LOGO and gaming approaches, CAI makes an explicit attempt to

instigate and control the learning process. Although CAI programs may use

simulations and games, their main focus is not on these activities, but on the

instructional process itself. The goal of CAI research has been to build

4



carefully designed instructional plJgrams that can be optimized to the needs

of each student.

Traditional CAI: Linear and Branching Programs

The first generation of computer-based instructional programs were

heavily influenced by Skinnerian ideas; they were based on the principle that

the main task of teaching is to reinforce desired behavior (or successive

approximations to desired behavior) (O'Shea & Self, 1983). These so-called

"linear" programs had three main features. First, program output was

organized into discrete frames each designed to take the student a small step

toward the desired behavior. Second, students advanced through the program by

responding to each frame of output, usually by filling in a blank. Third, the

program reacted to the student's input by presenting the next frame, whose

content was predetermined by the program author. Although the emphasis was on
6

feedback and individualization, feedback was provided only after correct

responses, and individualization meant only that a student could proceed at

his or her own pace, not that the material was presented in a different way to

different students.

Branching programs were an attempt to escape the rigidity of the linear

approach and to use the student's response to control what the student saw

next. The view of the student as a passive recipient of information remained

unchanged, but the emphasis now was on the exposition being sensitive to the

student's response. Branching programs differed from linear programs in a

number of important ways. First, output frames tended to be larger, since

there was less emphasis on the need for the student to always be correct.

Second, branching programs were able to adapt, albeit in a limited way, to the

,.,

needs of individual students: less able students were given more help than



abler students. An incorrect response resulted, for example, in an exposition

of remedial material; the problematic frame was then repeated before moving on

to the next frame in the curricular sequence.

Despite these differences, however,linear and branching programs have

many features in common. Both emphasize the importance of systematic

presentation. Both treat the student as "tabula rasa." Both are concerned

with the issue of instructional efficiency and cee learning as the acquisition

of knowledge rather than experience. Both encourage students to do what is

expected of them and provide no room for student initiative. Finally, both

are instances of "programmed learning:" all branching decisions as well as the

content of each frame are prespecified by the author. Although the branching

strategies of some programs became quite involved, incorporating the best

learning theory available, critics have argued that branching programs do not

make effective use of the computer, and that many CAI systems are little more

than programmed texts. Also, for complex subject matter, the difficulty of

pre-specifying all possible instructional sequences becomes prohibitive.

Two Demonstration Projects in CAI: TICCIT and PLATO

In 1971, after more than a decade of research and development efforts in

computer-assisted instruction, the National Science Foundation decided to

explore the effectiveness of this instructional approach by investing ten

million dollars over five years in two demonstration projects, known as

TICCIT and PLATO. The aim of the TICCIT project (Time-shared Interactive

Computer Controlled Information Television), which was carried out by MITRE

Corporation, a major defense contractor, was to demonstrate that CAI could

provide better instruction at less cost than traditional teaching methods in

community colleges. The program was designed as a primary source of

6
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instruction, and not merely as an adjunct to conventional teaching (O'Shea &

Self, 1983).

Each student was provided with a terminal, which included a keyboard, a

color television, and videotapes. A loudspeaker on the terminal provided

prerecorded audio messages to the student. The student communicated with the

system through the keyboard or a light pen. TICCIT was tested in pre-calculus

and English composition courses at two community colleges.

Evaluation findings indicate that the system's emphasis on lowering per

student costs made it unpopular with the faculty of the two community

colleges. In addition, the development of course material, particularly in

English composition, resulted in lengthy disputes over content and method.

Furthermore, the effort required to develop software was grossly

underestimated. Test results show that students who completed TICCIT courses

attained higher scores than the control group. But the program suffered from

very low completion rates. In math, the completion rate was 16 per cent

compared to 50 per cent for non-TICCIT courses. In general, the system seems

to nave favored good students over poor students, and it was ineffective kor

those who could not manage their own instruction (O'Shea & Self, 1983).

The second of the NSF-funded projects was based on the University of

Illinois' PLATO system (Programmed Logic for Automatic Teaching Operation).

PLATO began with one terminal in 1960; by 1971, the NSF project (called PLATO

IV) had about 950 terminals in 140 sites, and 8,000 hours of instructional

materials contributed by more than 3,000 authors (O'Shea & Self, 1983). Its

aims were to demonstrate the feasibility of a computer-based educational

network; to demonstrate that such a system was economically viable and could

serve any educational level; to develop curriculum materials; and to gain

7
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acceptance by instructors and students. PLATO's implicit aim was for the

system to grow into a national and even international network.

The project made use of very large networks of terminals and the latest

in computer technology. Unlike TICCIT, it made little effort to control what

the various program authors wrote either in terms of quality or content, and

as a result the material produced was of variable quality. Teachers were

permitted to use the system in whatever way and to whatever extent they

wished. Students interacted with the program by means of a terminal and a

plasma display panel (the panel had internal memory; it was also transparent,

enabling slides to be projected and to be superimposed pn computer-generated

graphics). Students could also communicate with the system by using a touch

screen.

The evaluation of PLATO IV showed mixed results, mainly because of the

variation in quality among programs. As in TICCIT, the preparation of

material turned out to oe more difficult than anticipated. Unlike TICCIT,

however, the system had drop-out rates no higher than for human instruction.

Moreover, it was found to be generally popular with both student and teacher

users. One reason why teachers liked it, despite the absence of clear-cut

performance advantages, was because they retained control over how it was used

(O'Shea & Self, 1983).

Early Uses of AI: Generative Programs

The requirement that the entire instructional process, including the

content of each frame, be prespecified by the author makes the task of writing

computer-based materials extremely time-consuming. "Generative CAI"--so

called because of its ability to generate problems from a large database- -

came out of a desire to make the task of writing instructional programs

8
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easier. It also emerged from a different educational philosophy, which was

based on the belief that students learn better when they work on problems that

are appropriate to their level of skill than when they follow a prespecified

sequence of material.

Generative programs represent the earliest application of AI techniques

in education. The approach has been used primarily in developing drill and

practice programs in arithmetic and vocabulary recall. A generative system

consists of three main components. The first is a set of parameters on a

particular problem (for example, finding the equation of a line), which are

then replaced by randomly generated integers in the course of an instructional

session. The second is a link connecting problem types to appropriate

solution processes (for example, the above problem may require finding the

y-intercept). The third is a teaching strategy, which usually includes

ordering problems according to their level of difficulty and knowing when to

move from one problem to another.

The major advantage of generative CAI is that it can provide as many

problems as the student needs to learn a skill, and can control the level of

difficulty of the problems. Another advantage is that the courseware can

solve the problems it generates and present step-by-step solutions to them.

The program can ask relevant questions of the student (for example, in

connection with a graphing problem it can ask, "What do you think the

y-intercept is: "). It is also capable of answering prob.Lems generated by the

student so long as the problems follow a format the system has been programmed

to understand. Finally, generative programs are able to create ltudent

'0.1s based on stereotyped characterizations of student behavior. These are

'ough estimates rather than precise indicators of stude:Its' knowledge;

of the simplicity of arithmetic and vocabulary drills, however, this

9



technique has proven sufficiently robust for instructional use.

Although generative CAI marks an advance over branching programs, it has

two important limitations. First, this approach is limited to very simple

knowledge domains. Its most effective application, for example, has been in

arithmetic drill and practice. Second, few subjects are so well structured

that they can be cast into a generative model, which requires a way of

determining the relative difficulty of the material to be taught. Thus, the

approach is not very useful for teaching subjects that admit to more than one

correct answer, or where it is difficult to sort questions by order of

difficulty.

Mathematical Models of Learning

The first efforts at building adaptive CAI, exemplified by branching and

generative programs, were criticized for their reliance on informal theories

of learning. In addition to being severely limited in their ability to adapt

to the needs of different students, these programs had no way of knowing which

teaching strategy would be most effective in any given situation. In an

attempt to predict the effects of alternative teaching strategies, researchers

built instructional programs that contained explicit representations of

learning theories. These theories were expressed in mathematical notation.

To determine what teaching strategy is optimal, a program first needs to

estimate the student's level of knowledge. One can then use this model of the

student's knowledge to predict the effect of presenting a particular chunk of

material. A teaching strategy can be individualized to a particular student

by using the student's responses to learn about his or her prior level of

knowledge and learning processes (style, speed, areas of difficulty).

10
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The problem with mathematical models of learning is that, with the

exception of a few special cases, we do not understand learning processes well

.enough to model them in mathematical form. In addition, mathematical or

stochastic learning models tend to oversimplify the process of learning.

Mastery of a subject usually involves gradually increasing comprehension of

fuzzy concepts, whereas mathematical representations tend to view the

acquisition of knowledge as a more black-and-white, linear process.

Recent Developments: Dialogue-based Tutorial Systems

Programmed learning and its implementation on computers in the form of

branching programs led to regimented instructional approaches: the computer

asked all the questions, and the student selected the answer from a small set

of possible answers. Much of the subsequent development of CAI was a reaction

to this regimentation. Generative CAI and mathematical models of learning

were alternaeive strategies which provided more flexibility lnd adaptability,

but their utility has proven to be limited because they presuppose

well-structured problems and the existence of fully developed models of

learning.

Although there is no sharp boundary between generative CAI and ICAI, the

latter is characterized by a finer-grained capacity for student diagnosis, and

a more sophisticated notion of tutoring and the varieties of teaching

strategies that can be used. Current ICAI continues to use generative

techniques to create new problems as they are needed in an instructional

session.

Recent work in ICAI has attempted to increase student control over the

machine. Researchers have developed learning environments which go beyond

classical CAI to incorporate "learning by doing" approaches. These systems

11
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combine games, simulations, or programming with machine-based tutors which are

capable of engaging the student in a dialogue. Much of current ICAI research

can be seen as an attempt to reconcile two apparently conflicting objectives.

On the one hand, researchers have tried to develop good tutors whose ability

depends, to a large extent, on limiting the student's instructional paths and

exercises to those that can be completely specified ahead of time. On the

other hand, they have tried to build programs based on "learning by doing"

notions, which allow studants freedom to explore, to make mistakes, to pursue

dead ends--behaviors that cannot be completely specified in advance (Sleeman

and Brown, 1982).

To be able to provide effective tutoring in a relatively open-ended

environment, a system must have expertise in solving problems, the capability

to diagnose or model student behavior, and the ability to intervene

appropriately. In the following section we describe in some detail the

components that make up a complete--that is, idealized--ICAI system. Even the

best of the existing intelligent tutors, however, are only approximations of

this ideal type; one must keep this fact in mind when reading descriptions of

actual ICAI programs in Section III. Some have diagnostic capabilities, but

lack a tutor; others are able to model student behavior and select appropriate

teaching strategies, but have no natural language processing capabilities.

In abandoning behaviorism for a more cognitively-oriented approach,

current research has also forsaken traditional CAI's objective of providing

complete machine-based courses in the style of TICCIT or PLATO. Instead,

developers have concentrated on programs of more limited curricular scope that

provide support for, and serve as adjuncts to, conventional teaching methods.

Subject areas in which intelligent tutors have been developed include

basic arithmetic (BUGGY, WEST); simple algebraic equations (LMS, O'Shea's

12
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Quadratic Tutor); logic and problem-solving (WUMPUS); debugging of electronic

circuits and computer programs (SOPHIE, LISP TUTOR); and medical diagnosis

(GUIDON). Research efforts are currently under way in physics, organic

chemistry, arithmetic, geometry, and probability theory.

13

b



SECTION II: DESCRIPTION OF ICAI SYSTEMS & THEIR COMPONENTS

In its ideal form, a complete ICAI system comprises four major

components. The first component contains the substance of what is to be

taught--the program's knowledge of a domain and its prO,lem-solving expertise.

This expertise module is capable of generating problems and comparing the

student's solutions with optimal problem-solving strategies. The second

component is responsible for diagnosing the student's knowledge of, and

misconceptions about, the subject matter contained in the system's knowledge

base. This student module indicates what the student knows and does not know

and constructs a model of the student which is used to guide the instructional

dialogue. The third component specifies how the system presents material to

the student, to eliminate misconceptions and to communicate new knowledge.

This teaching module synthesizes knowledge about natural-language dialogues,

teaching methods, and subject matter; selects problems for the student to

solve; monitors his or her performance; provides assistance upon request; and

selects remedial material. The fourth module handles communication between

student and system, typically by using some method of natural language

processing.

Expertise Module

The type of knowledge representation schece used in a system's database

will depend on the domain in question as well as on the purposes for which the

program has been designed. An expertise module about geography, for example,

will typically consist of a large set of facts about objects in the domain (so

called "declarative" knowledge): information about the region and countries

in question, capitals and other major cities, languages, populations,

14
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agricultural and industrial products. In addition, actions and events with

their time sequence and causal relationships can be modeled in a declarative

format. Such a representation scheme, for example, has been used to teach

about the causes of rainfall (see WHY in section three).

A second type of subject-related knowledge, however, may also be

required. Expertise requires manipulating facts in the database to draw

inferences, solve problems, and perform a variety of other tasks. This so

called "procedural knowledge" is what humans use to ride a bicycle, or compose

sentences, or do arithmetic operations. In highly structured content areas

such as arithmetic or electronics, procedural knowledge is contained in a set

of definitive rules about what to do and when to do it. In other, less

well-specified domains, however, procedural knowledge consists largely of

"rules of thumb" about how to proceed in an ambiguous or uncertain

environment. Such heuristic rules are the kind of knowledge which is usually

absent from textbooks, but which enable a domain expert to make a decision

even when he or she is uncertain of the facts or when the evidence points to

more than one answer.

Some computer programs also make use of knowledge about knowledge

("meta-knowledge"), which has to do with the system's ability to assess what

it knows, the extent and origin of its knowledge about a particular subject,

and the reliability of a given piece of information. SCHOLAR, for example,

can reason plausibly about some aspect of South American geography without

having any explicit knowledge of the subject in question (see section three).

Knowledge representation is the most active area of AI research today.

Modeling the knowledge of human experts in a computer program lies at the

heart of the research on expert systems. The construction of these knowledge-

based systems is typically done by sitting down with human experts, watching

15
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their work, and asking questions about how they make decisions. Because these

experts are not always able to provide answers that fit easily into a computer

program, some way has to be found of representing their knowledge: the rules

and procedures they use in their work. Researchers look not only at

declarative knowledge but also for procedural knowledge: how a particular

scientist makes a particular kind of decision under conditions of uncertainty.

The knowledge inside an expert's head is largely heuristic knowledge,

based on experience and couched in uncertainty; expertise is often more a

matter of good guesses than of facts and rigor. Moreover, much of the

expert's knowledge is private because he or she is unable to share it with

others; frequently, an expert is not even aware of all he or she knows. But

if someone undertakes patient observation of the expert in the act of doing

what he or she does best, the knowledge can be teased out and made explicit.

This painstaking method, called knowledge engineering, has been applied in a

variety of domains, including organic chemistry, the diagnosis of infectious

diseases (see the discussion on GUIDON in section three), geological

exploration, and elementary and advanced mathematics.

Another part of research on knowledge representation concerns the

modeling of this human expertise in a program. For a time, AI had been split

between those who preferred declarative representation schemes and those who

thought procedural representations were more effective. "Declarativists" have

stressed the static aspects of knowledge--facts about objects and events and

the relationships among them. Proponents of procedural schemes have argued

that AI systems have to know how to use their knowledge: how to find relevant

facts and make inferences. Declarativists have pointed to the flexibility and

economy of their representation schemes and to the modularity and

modifiability of their systems. Proceduralists have talked about the

16
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directness and transparency of reasoning that their programs facilitate. The

earliest AI programs tended to use one representation approach at the

exclusion of the other. More recently, researchers have attempted to combine

declarative and procedural strategies in an effort to exploit the strengths of

each approach.

Types of Representation Schemes

The major task confronting AI researchers has been to create programs

that exhibit intelligent behavior. Toward that goal, researchers have

developed schemes for incorporating knowledge about the world into their

programs; these involve routines for manipulating specialized data structures

to make intelligent inferences. Each scheme for representing knowledge

touches on issues central to the study of cognition and intelligence.

Although there is a great deal of debate about the strengths and weaknesses of

various representation schemes, very little is known with any certainty about

why certain schemes are better than others for particular knowledge domains.

In the following paragraphs, we describe some of the principal methods used to

represent knowledge in ICAI systems.

One of the first declarative methods for representing knowledge,

"statespace search," was developed to allow programs to play games such as

chess. The search space is not so much a representation of knowledge as it is

a representation of the structure and rules governing the game. This includes

knowledge of the available alternatives at each stage of the problem--for

example, the possible legal moves at each turn of a chess game. The scheme is

based on the idea that, from a given state in a problem, all possible next

states can be determined with a small set of rules (in chess, these correspond

.
to the rules for moving each piece).

17
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The problem is that with the most interesting problems (like chess), far

too many possible combinations of moves are possible; state-space search leads

to "combinatorial explosion." A major goal in AI research has been to limit

the number of alternatives examined at each stage of a problem-solving

sequence to the best available choices. In order to determine what

alternatives are best, the program must make use of large amounts of

knowledge, encoded wi0:in the program in some knowledge representation. In

general, whatever the domain, the goal of research in knowledge representation

has been to allow AI programs to behave as if they knew something about the

problems they solve.

A second widely-used declarative representation scheme is based on formal

logic. The advantage of a formal approach is that it makes use of a set of

rules, called rules of inference, which allow the derivation of new

information from facts that are already known to be true. Logic-based schemes

also allow the truth of any new statement to be checked against what is

already known to be true. The most important feature of these systems is that

deductions are guaranteed to be correct (given accurate assumptions), a level

of certainty that other representation schemes cannot match. One weakness of

such schemes, however, is that when they are used with large databases, a

combinatorial explosion can sometimes result. A logic system may have trouble

selecting which rules to apply to which facts at each step of a complex proof.

A third declarative scheme, semantic nets, -.'as developed as a

psychological model of human associative memory. A semantic net consists of

nodes (which represent objects, concepts, and events) and links between the

nodes (representing their interrelations). One key feature of semantic net

representations is that important associations can be made with a minimum of

search through the database: relevant facts about an object or concept can be
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traced directly from the nodes to which they are directly linked. It is both

a weakness and strength of semantic nets that, in contrast to logicbased

representation systems, they use a wholl7 contentdependent reasoning

strategy. While there is no inherent logic to reasoning based on nets, the

reasoning strategy that is used in a net representation has the benefit of

being directly familiar to humans.

The second major category of knowledge representation schemes is

characterized by data structures in which knowledge about the world is

contained in procedures--small programs that know how to do specific things.

Procedural representation techniques, for example, have been used to create

parsers for natural language commun4cations systems; parsers use grammar rules

and other information to determine the functions of words in a sentence.

Procedural techniques have also been used to represent a wide variety of

skills; SOPHIE, for example, uses a procedural approach to represent the

expertise of an electronic troubleshooter (see section three). Despite thei.

powerful problemsolving capabilities, however, procedural representation

schemes have a major flow: the underlying domain knowledge is organized in a

manlier that is not readily accessible to humans. As a result, it is difficult

to verify and change programs that use procedural representation.

The production system approach is an attempt at addressing the

limitations of a procedural representation and at linking declarative and

procedural knowledge. First developed by Newell and Simon (1972) as a model

of their theory of human cognition, it allows for a modular representation of

knowledge. This approach is finding increasing popularity among developers of

large AI programs, in which the database consists of rules, called
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productions, which specify a particular action given certain preconditions.

These rules take the general form: "If this event occurs, then do this

action."

The usefulness of the production system approach derives from the fact

that each rule and the conditions in which it applies are stated in terms that

are understandable to humans. In addition, interactions between rules are

minimized (that is, one rule does not call upon another). Production systems

have been useful in controlling the interaction between statements of

declarative and procedural knowledge. Moreover, because they facilitate human

understanding and the modification of programs with large amounts of

knowledge, production systems have been central to building systems that

contain large databases such as MYCIN (see section three).

"Frames and Scripts," another knowledge representation scheme, is still

in its formative stages of development. A frame is a data structure that

includes both declarative and procedural information in predefined internal

relations. An interesting feature of this scheme is the ability of a frame to

determine whether it is applicable in a given situation. The system may select

a frame to aid in a given situation; this frame tries to match itself to the

data it discovers, but, if it finds it is not applicable, control is

transferred to a more appropriate frame. Scripts are frame-like structures

specifically designed for representing sequences of events (see WHY in section

three). Both scripts and frames refer to methods of organizing the knowledge

representation that facilitate recall and inference.

Ultimately, all knowledge representation schemes are interchangeable; if

we know one scheme in sufficient detail, we can construct an alternative. It

is the intended use of the knowledge by the computer program that recommends

one representation scheme over another. Indeed, some AI researchers recommend
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the use of multiple representations of the same i nformation as a strategy for

creating truly effective and versatile tutorial systems (Stevens,

Goldin, 1982).

Collins, and

Articulate Expertise

Domain expertise can be either "glass-box"--that is, a program can

explain each problem-solving decision it makes in terms that a human can

understand--or "black box"--a program can use data structures and algorithms

that do not mimic those used by humans. Historically, most expert systems

have used the latter approach, largely because a black-box expert is not

constrained by human-like algorithms and hence tends to be more efficient in

performing the kinds of large-scale, complex computations for which knowledge-

based systems are typically used.

But a tutoring system requires glass-box capabilities in order to be

effective. The capacity for human-like reasoning can be used both for the

evaluation of the student's moves and for determining the reasoning underlying

these choices. Skills can be determined by looking at the expert's

problem-solving behavior and noting the processes involved. A glass-box

expert is also useful for evaluation because it can generate all alternative

"better" moves and hence determine the rank ordering of a given move.

However, the ability to evaluate the student's moves, which involves

determining the complete range of alternate moves, requires much more

computation than simply assessing the skills underlying a particular move. A

black-box expert tends to be more efficient for such computations, but, since

the skills it employs are not analogous to those of a human, they cannot be

used for categorizing the student's skills.

One solution to this dilemma is to combine an efficient and robust
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black-box expert for evaluation with a less efficient glass-box expert for

skill determination. This is the strategy used by the developers of WEST (see

section three); they constructed a black-box expert for evaluating the

student and augmented it with small pieces of an articulate expert which were

used to identify those places in the instructional process where tutoring was

appropriate. These pieces of articulate expertise enable WEST to work

backward from a solution to determine what parts of the problem-solving

procedure require tutorial intervention.

The Student Module

The student-model module is a recent focus of ICAI research; one measure

of its importance is that it serves as the major theme of Sleeman and Brown's

Intelligent Tutoring Systems (1982). The module is used to hypothesize about

the student's misconceptions and less than optimal problem-solving behavior.

The goals of the module are to predict student behavior in learning situations

and to indicate the causes of student errors. The information contained in

the student model is used by the tutoring module to point out misunderstand-

ings and faulty strategies, indicate why they are wrong, and suggest

corrections.

The student model is constructed by posing questions to the student and

analysing his or her responses. In addition, ICAI systems use "flags" in the

system's knowledge base to indicate the areas mastered by the student.

Information used to maintain the student model includes pupil problem-solving

behavior, direct questions asked of the student, assumptions based on the

user's experience, and assumptions about the difficulty of the material.

Researchers have used a variety of techniques to construct student
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models. In this section we describe three major constructs for representing

student knowledge: the "overlay" model, which views the student's knowledge as

a subset of an expert's knowledge (Goldstein, 1982); the "differential" model,

which focuses on the differences between the behavior of a student and that of

an expert (Burton & Brown, 1982); and the "pertubation" mod21, in which t'le

student's misconceptions are viewed as variants of correct problem-solving

procedures (Burton, 1982).

The overlay model is perhaps the most commonly used of the student

modeling schemes; it has been used, for example, in SCHOLAR and SOPHIE (see

section three), as well as in a number of math tutors. This model views

expertise as a set of facts or rules, and the student's knowledge is

represented as a subset of this knowledge. Tutoring consists of encouraging

the growth of this subset by intervening where a missing fact or rule is

needed to arrive at a correct solution.

The overlay model is constructed from hypotheses about which skills of

the machine-based expert the student possesses. The system hypothesizes that

the student does not possess a skill if the student's answer to a given

problem is worse than the expert could have provided using that skill. This

hypothesizing is based on a two-part calculation: first, for each

problem-solving situation, the system records how many times a particular

skill should have been used (based on its model of expert behavior); then, the

system records how many times the student used the rule under the appropriate

circumstances. The ratio of these two numbers defines the frequency with

which the skill was used; when the ratio exceeds a certain cut-off point, the

program assumes that the student knows the rule.

The principal shortcoming of the overlay model is that it fails to

account for the way in which new knowledge and problem-solving skills usually
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evolve--major means of new knowledge acquisition include analogy,

generalization, debugging, and refinement. The model also fails to consider

that a novice may not be using a subset of the expert's skills, but rather his

or her own rule constructs, which may bear little resemblance to those of the

expert.

The "differential" model was first designed as the diagnostic component

of a computerbased game (Burton and Brown, 1982) and was intended to address

the special problems that a gaming environment poses for effective

instruction. Perhaps the main reason that a game is problematic as an

instructional environment is that little explicit diagnostic activity can

occur: the coach or tutor cannot use tests or pose multiple questions without

interferring with the flow of the game. Instead, the system must remain

unobtrusive, restricting itself to making inferrences about the student's

weaknesses from his or her behavior while playing the game.

This diagnostic strategy poses difficulties for an ICAI system. The

absence of a demonstrable skill may not always signify ignorance of that

skill; it may simply indicate that the student has had no occasion to use it.

The absence of a skill in a sequence of problemsolving activites has

diagnostic importance only if an expert in the same situation would have used

it. To cope with the restrictions imposed by a gaming environment, Burton and

Brown have devised a "differential" modeling technique that compares what the

student is doing with what an expert would have done under similar

circumstances. The "difference" in their behaviors provides the basis for

making hypotheses about the extent of the student's knowledge and the nature

of his or her misconceptions.

The construction of a differential model requires two steps: evaluating

the student's behavior in relation to the moves an expert might have made
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under similar conditions, and determining the underlying skills that went into

the selection of the student's action as well as the better moves of the

expert. For the evaluation of the student's behavior, the system needs only

the results of its reasoning strategy--that is, a black-box expert can be

used. For the second task, however, the system needs access to the knowledge

that went into the selection of the better moves--glass-box expertise is

required.

A thirl approach to modeling student behavior comes ou f the research

on BUGGY and DEBUGGY (see section three). Called a "pertubation" or "buggy"

model, this strategy views student errors as systematic "bugs" in the

repertoire of the student's problem-solving behaviors. The pertubation model

is an attempt to improve upon the usual kind of diagnosis, which consists of

determining whether or not a student has mastered a particular skill and

perhaps also the degree of mastery of the skill. This typical diagnostic

approach offers little help in the instructional process, because it is not

fine-grained enough to specify which parts of the skill need improvement.

Without a model of the skill being tested, it may even be difficult to

determine if a student possesses the skill (Burton, 1982).

The more precise kind of diagnosis that is made possible by the

pertubation approach involves, first, specifying the set of sub _Lis in a

given skill and, second, determining which of those subskills are missing from

the student's repertoire of skills. The model is able to reproduce the

student's behavior on problems that the student has already worked and to

predict his or her behavior on future problems. Indeed, its developers expect

the model "to be able to predict, not only whether the answer is incorrect,

but the exact digits of the incorrect answer on a novel problem" (Burton,

1982).
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The pertubation model has to deal with two potential sources of

uncertainty. On the one hand, there may be more than one bug that accounts for

the student's answer. On the other, there may be no systematic bug at all

that has caused the student's error; mistakes may be due, for example, to

"performance lapses"--fatigue, laziness, boredom, or inattention. The system

must be able to find the student's systematic errors even when non-systematic

errors are present.

The perturbution model's current solution to the presence of noise is to

include only those bugs that account for at least forty per cent of the

student's errors. Bugs that do not meet this condition are rejected; those

that remain become part of the diagnosis. Each bug is then classified on the

basis of how well it explains the student's answers.

The Teaching Module (will be added later)
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The Communication Module

A sentence can be analyzed either from a syntactic or a semantic point of

view. Syntax, or grammar, specifies rules for combining words in a certain

order, and allows us to analyze these word patterns without paying attention

to their meaning. The sentence, "I been to the supermarket," for example, is

syntactically incorrect but meaningful; we know that the word "been" should be

accompanied by an auxiliary verb such as "have" or "had," but we have no

problem understanding what the statement is trying to say. Sometimes,

however, syntactical mistakes can interfere with the meaning of a sentence.

The sentence, "The been supermarket to I," not only looks grammatically

incorrect but also sounds like nonsense.

By contrast, semantics is concerned with the meaning of words or

sentences as they are used in a particular context. A sentence may remain

syntactialy unchanged, but alter its meaning in different circumstances. For

example, "I see the picture" can mean one thing in the context of a visit to

an art gallery and quite another as a response to an explanation. Although

syntactic concerns are important in language understanding, it is this ability

to handle the semantic complexity of a language such as English or French that

ultimately distinguishes the expert user of language from the novice, the

native from the beginning foreign student.

Similarly, the major obstacles to improved natural language processing

by computers have more to do with the semantic complexity of language than

with syntax. At present, the limited ability of knowledge-based systems to

understand natural language--which is based on the program's use of grammar

rules as well as domain-specific knowledge stored in its database--is more



akin to that of a first-year foreign student than to that of an expert native

speaker.

In natural language processing, grammatical rules are used to parse input

sentences, that is, break them apart to get at their meaning. Several

different kinds of grammars have been used in natural language programs,

including the semantic grammar scheme used in SOPHIE, which substitutes the

usual categories of noun, verb, and adjective for more domain-specific

characterizations of the words used (see section three). Parsing consists of

using grammar rules to determine how words are used in an input sentence in

order to build a data structure (sometimes this structure is thought of as a

diagram) representing the relations among words in a sentence. This structure

can then be used to get at the meaning of a sentence. All natural language

processing programs contain a parsing component. The design of a parser is a

complex problem. In addition to having to specify the grammar to be used, a

decision must also be made about the method of use of t" grammar--that is,

the manner in which word sequences are matched against patterns of the grammar.

Knowledge-based Natural Language Systmes

By the early 1970s, researchers had developed systems that attempted to

deal with both syntactic and semantic aspects of language processing. These

programs integrated syntactic and semantic analysis with knowledge about a

limited domain, allowing them to deal with more sophisticated aspects of

language than previously possible. The increased sophistication of these

programs had a great deal to do with advances in knowledge representation.

Indeed, research in natural language understanding has been closely connected

with development efforts in knowledge representation (Barr & Feigenbaum, 1981).

Both procedural and declarative knowledge representation schemes have
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been used to create natural language processing systems . Perhaps the most

widely used declarative approach has been semantic networks, in which words

and their meaning are represented as a set of linked nodes, a data structure

that facilitates the drawing of inferences (see SCHOLAR in

Case representations extend the notion of semantic net

a "case frame"--the clustering of properties of an object or

section three).

with the idea of

event into a

single concept. One variation of this theme is Roger Schank's

"conceptual dependency" (see below). The advantage of case rep

that they group relevant sets of relationships into single data

idea of

resentations is

structures.

The idea of clustering structures has been used in representation schemes

based on the notion of frames. In analyzing an input phrase or sentence, a

frame-based language understanding system tries to match the input to the

prototypes of objects and events in its domain that are stored in its

Researchers have used frame-like data structures called "scripts,

database.

' which

represent sterotyped sequences of events, to understand simple stories.

approach assumes the events being described will fit within one of the

program's scripts, which the program will use to fill in missing pieces in

story. The common element in all frame-based systems is that frames make

possible the use of expectations about the properties of objects or

events--about what typically happens in a variety of familiar situations.

Frame-based programs compare an ambiguous sentence with what would be expected

based on a prototype. If there is a ;lausible match, assumptions can be made

about what is meant (Barr & Feigenbaum, 1981).

Schank and Hunter illustrate their notion of "expectation packages" with

a story about a man who goes to a restaurant, orders a sandwich, and leaves a

large tip because the waiter brought the sandwich quickly. Although the story

This

the
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does not state explicitly that John ate the sandwich and payed for it, these

actions are implied by the context. "When we hear about a restaurant, we

expect to hear about a variety of objects, events, and people. There should

be a menu, the patron should look at the menu, pick something, tell the order

to a waiter, or waitress, wait for a while, be served, eat the food, have the

table cleared, get a check, pay the check, leave a tip, and depart" (Schank

Hunter, 1985).

The investigation of script- and frame-based systems is the most active

area of AI research in natural language understanding. A major focus of

current research is the construction of a communication module that can

duplicate the human ability to understand a partial utterance or sentence that

relies for its meaning on implicit references to previous statements. These

are common features of everyday discourse, but they present enormous problems

for any machine-based language processor. For example, "Where is the Empire

State building?" "How tall is it?" both refer to the Empire State building.

To interpret such anaphoric references, the system must use information

gathered from earlier statements; in this case, the program must link the

pronoun "it" in the second sentence to the subject in the first sentence.

Similarly, elliptic references require filling in incomplete phrases

using terms already mentioned. For example, "How tall is the Empire State

building?" "... the Sears building?" are both questions concerned with the

height of the buildings. When we hear questions such as these, we implicitly

fill in the missing parts; it is an activity that comes so easily to us that

we take it for granted. But it is precisely this kind of common-sense skill

in language understanding that a computer program finds extremely difficult.



Conclusion

No ICAI system has completely satisfactory models for each of the four

components discussed in this section. For one thing, understanding natural

language is an extremely complex task. Natural language systems are not as

flexible as human speech is, requiring users to restrict themselves to a

subset of the language--a limited number of vocabulary words and syntax rules.

Also, we do not know very much about differences in how people reason or

learn; for this reason, the problem-solving strategies in the expertise model

may not be appropriate for all users, particularly nonadults. In addition,

expert tutoring systems are not really skilled at pedagogy compared to human

instructors. Unlike a good human teacher, the intelligent tutor simply

follows a small set of instructional rules and is unable to take into account

a student's physical and verbal cues, affective style, or level of interest.



SECTION III: EXAMPLES OF ICAI SYSTEMS

The ICAI tutors described below illustrate a variety of knowledge

representation schemes, diagnostic models, and teaching strategies. These

programs exemplify some of the major directions taken by early ICAI research

as well as some of the strengths and weaknesses of existing intelligent

tutoring systems. Their approximate dates of completion are given in

parentheses; multiple dates indicate different versions of the same program.

SCHOLAR (197u, 1973, 1915)

SCHOLAR, a pioneering effort in the development of computer tutors, is

capable of handling unanticipated student questions and of generating instruc-

tional material in varying levels of detail. The program was created by Jaime

Carbonell, Allan Collins, and their colleagues at Bolt Beranek and Newman,

Inc., to instruct students in South American geography. An example of a

"mixed-initiative" tutor, the system allows both student and machine tutor to

control the dialogue. Like any competent human tutor, the program can take

the initiative during an instructional dialogue to question the student about

the extent of his or her knowledge or to determine the nature of the student's

misconceptions.

SCHOLAR's mixed-initiative capabilities are based on its ability, within

limits, to process a restricted form of natural language: both the student's

input and the program's output take the form of English sentences. The system

can handle unanticipated student questions as long as they correspond to a

list of expected question types contained within the program. Also, SCHOLAR

can produce short, simple English sentences that contain no clauses and that

make use of only a few verbs.
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The program's knowledge base is represented in a semantic net. As noted

in Section II, this representation scheme is an attempt at modeling the human

capacity to form associations among objects or concepts. SCHOLAR organizes

information so that relevant facts about a topic can be inferred from the

nodes to-which that topic is directly linked. Knowledge can thus be stored

effectively for fast, easy retrieval. Each none or unit in SCHOLAR's

knowledge base corresponds to some geographical object or concept (composed of

a name and a set of properties associated with that name).

SCHOLAR was one of the first attempts to explore the characteristics of

Socratic dialogue and to model this teaching strategy in a program. The tutor

elicits responses from the student, uses these responses to diagnose miscon-

ceptions, and then presents material to encourage the student to revise his or

her faulty knowledge. The program is based on an analysis of human tutorial

dialogues and attempts to mirror the behavior of expert human tutors.

SCHOLAR employs a variety of inference strategies--production rules--for

responding to student questions and for evaluating student answers. These

strategies are designed to cope with the incompleteness of the information

stored in SCHOLAR's knowledge base and allow the program to reason about the

extent of its knowledge--to engage in "plausible reasoning" (Collins, 1978).

For example, one such strategy is called "intersection search" and enables the

program to answer questions such as "Is Buenos Aires in Argentina?" The

system undertakes a search attempting to find an intersection linking Buenos

Aires with Argentina. If no intersection were to exist, it would answer,

"No." In this instance, however, it finds an intersection linking the node

for Buenos Aires with the node for Argentina. Indeed, the semantic net is

organized in such a way that the program can distinguish between the question

above and a similar question in which subject and object are reversed: "Is
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Argentina in Buenos Aires?" To the latter question SCHOLAR is able to answer,

"No, Buenos Aires is in Argentina" (Barr and Feigenbaum, 1982).

A second inference strategy makes use of the notion of open and closed

sets. Sets that contain all relevant objects are defined as "closed," while

sets that contain some but not all the objects in a given category are defined

as "open." This labelling enables the system to determine when its knowledge

is incomplete and to reason about the extent of its knowledge. In SCHOLAR's

semantic net, sets of objects which satisfy some condition (e.g. countries on

the Pacific) are labelled as either open or closed.

The program can arrive at a plausible answer to a student's question

about rubber production in Guyana, for example, without having any explicit

knowledge of the subject (Barr and Feigenbaum, 1982). SCHOLAR will look into

its knowledge base, compare Guyana's agricultural products with the

agricultural products of countries it knows produce rubber, infer that it

knows as much about Guyana as it knows about the other countries, and infer

further that it would know about rubber production in Guyana if it were

important. The program will then conclude, though somewhat uncertainly, that

rubber is not produced in Guyana.

SCHOLAR wil] provide the answer about Guyana, explain its reasoning, and

indicate a lack of certainty about its conclusion. The program will also

provide the student with whatever information it has about rubber production

in other countries in South America. SCHOLAR's ability to reason about the

extent of its knowledge represents an application of meta-level knowledge

(knowledge about knowledge).



WHY (1976, 1978)

A tutor on the causes of rainfall, WHY is an extension of the SCHOLAR

research. Like SCHOLAR, WHY is based on an analysis of tutorial dialogues,

but here the content deals with something more complex than simple declarative

facts about geography. Rainfall is a complex geophysical process involving

the interaction of numerous factors, including temperature, wind, land and

water masses-.

In developing WHY, researchers focused on three principal issues: the

characteristics of a good tutor, the nature of student misconceptions, and

effective strategies for explaining complex processes (Stevens, Collins, and

Goldin, 1982). By analyzing tutorial dialogues between human experts and

students, the program's developers were able to identify some of the elements

that make for good pedagogy. They found, for example, that students learn to

reason most effectively about complex processes by first working on specific

problems and then trying to generalize from them. They also discovered that

Socratic dialogue was especially effective for instructing students in domains

that require complex reasoning (Collins, 1976).

A major feature of WHY's Socratic method is its ability to evaluate a

student's response (say, a mistaken hypothesis about the causes of rainfall in

the Amazon region of South America) and to select a counterexample that

challenges the student to revise his or her theory. The goal of WHY is to

develop in the student a "causal model" of rainfall: to enable the student to

answer questions, give explanations, and make predictions about the causal

relations involved in producing rain.

In WRY, the causal model of rainfall is represented as a script-like

sequence of events. The script for heavy rainfall, for example, consists of

four steps--evaporation, movement of air mass, cooling, and precipitation.
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These steps are connected sequentially in the following manner: warm air

absorbs moisture from a body of water, then winds carry the moist air over

land, which causes the moist air mass to cool, which in turn causes

precipitation.

In addition, WHY utilizes subscripts which provide more detailed ex-

planation for individual steps in the main script, The process of evapora-

tion, for example, is described in a subscript that contains a five-step

sequence: 1) a body of water is warm; 2) this enables moisture to evaporate

rapidly into the air; 3) in addition, the air mass over the water is warm; 4)

this, in turn, enables the air mass to hold a lot of moisture; 5) these

conditions--warm air and warm water--enable the air to absorb a large amount

of moisture from the water.

The program prompts the student to suggest causes of rainfall, to look

for prior or intermediate causes and, finally, to suggest a general rule.

When such a rule is proposed, the system finds a counterexample (if the

proposed rule is, in fact, faulty) and challenges the student to revise the

rule to account for it.

A major finding of the WHY research is that the type of representational

formalism used in a program determines the kind of tutoring that is possible,

as well as the program's ability to handle questions and diagnose student

misconceptions. For example, although WHY is adequate for representing

misconceptions that result from missing or extra steps in its script-like

knowledge structure, many other kinds of misconceptions cannot be diagnosed by

the program. The WHY representation scheme emphasizes the sequential,

temporally-oriented aspects of the rainfall process, but is inadequate for

handling other, equally valid perspectives on rainfall. Questions such as,

"Does the temperature of water affect evaporation?" or "What happens to the
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temperature of air as it rises?" do x.ot fit into a temporal, sequential

format, requiring instead a functional representation.

A functional view emphasizes the roles that different objects play in the

operation of a complex system. As Stevens, Collins and Goldin point out,

a functional perspective differs from the scriptal view in

several ways. First of all, it is nonlinear and interactive

rather than ordered and sequential. Positive or inverse

functional relations "work" in either direction, whereas

"increase" and "decrease" would be encoded as different

events in a script representation. Secondly, causal

relations are implicit and indefinite in the causal view,

rather than explicitly stated as in the scriptal structure.

Saying that air humidity is positively related to air

temperature suggests some causal relation, but does not spell

out which factor is primary. (1982: 16).

A functional representation includes a set of actors (each with a role to play

in the overall process); a set of attributes (which describe the actors and

affect the process); the result of the process, which is always a change in

the value of some attribute (e.g., the result of evaporation is to increase

the humidity of the air); and the functional relationship (e.g., the positive

relation between the temperature of the moisture source and the humidity of

the air mass).

Aware of the limitations of WHY's script structure, Stevens and Collins

explored the possibilities of adding a functional perspective. They devised a

questionnaire containing such items as, "How is the moisture content of the

air related to heavy rainfall?" and "What causes evaporation?" to test

students' understanding of rainfall. They were able to identify sixteen

common user "bugs," none of which had }wen diagnosed earlier under the
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original script-like representation. Many of the bugs turn:A out to be

specific to the domain of rainfall. For example, the most common

misconceptions had to do with the cooling and heating of air masses. Thus,

WHY is limited in effectiveness by its lack of a functional representation.

Analysis of human tutorial dialogues shows that tutors spend a lot of

time diagnosing conceptual bugs that students make; have domain-specific

knowledge of the types of errors students are likely to make; and are able to

organize their knowledge in different ways to meet the demands of particular

instructional settings. Perhaps the most significant findings of the WHY

research is that an effective computer-based tutor, able to catch most student

misconceptions and provide appropriate instruction, requires more than one

representation of knowledge, In Section IV, applications of the knowledge

gained from SCHOLAR and WHY to a more complex program (STEAMER) are discussed.

SOPHIE (1974, 1975, 1977)

SOPHIE (SOPHisticated Instructional Environment) was created by John

Seeley Brown, Richard Burton, and their colleagues at BBN to provide a

learning environment in which students acquire problem-solving skills by

trying out their ideas rather than by direct instruction. These

problem-solving skills are developed in the context of a simulated electronics

lab. The students' task is to find faults in a malfunctioning piece of

equipment whose characteristics they obtain by taking measurements--voltages,

currents, resistances--to determine what is wrong.

The instructional system has a model of problem-solving in its knowledge

base and includes heuristic strategies for answering student questions,

criticizing hypotheses, and suggesting alternatives for current theories.

SOPHIE evaluates hypotheses by considering all the information that a student

38

41



should have been able to derive from his or her current set of measurements

and by constructing reasonable hypotheses from this derived knowledge base.

The program also judges the merits of a student's suggestion for a new

measurement in light of the prior sequence of measurements; SOPHIE can decide

if the measurement is valuable (does it eliminate or isolate a fault?) and

will inform the student when the proposed measurement provides no new

information.

A major issue in ICAI-related research has been the development of a

natural-language processing capability that allows the student to communicate

easily with the system. Experts agree that students will quickly become

frustrated if they must try several ways of expressing an idea before the

system can understand. SOPHIE attempts to cope with linguistic problems such

as anaphoric references, context-dependent deletions, and ellipses (see

Section II), which occur frequently in natural dialogues.

SOPHIE's natural-language capabilities are based on the concept of

"performance" or "semantic" grammar, in which conventional categories such as

noun, verb, and adjective are replaced by semantically meaningful categories.

These categories represent concepts known to the system--measurements, circuit

elements, transistors, hypotheses. The grammar, built on semantic categories,

allows the system's parser to deal with "fuzziness" or uncertainty.

If a student uses certain words or concepts that the system does net

know, the parser can ignore these words or concepts and try to make sense of

what remains. As a safeguard against any misunderstanding, the program

responds to a question with a full sentence, thus indicating what inferred

question is being answered.

SOPHIE performs several different logical and tutorial tasks. It answers

hypothetical questions of the "what...if" variety and evaluates student
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hypotheses (e.g. if a student's assertion is logically consistent with the

data already collected by the student). The instructional program can

generate its own hypotheses based on known information. Finally, the system

can determine if a given measurement is redundant (could results of this test

have been predicted given what was already known?).

Extentions of SOPHIE include a troubleshooting game for two teams of

students and the development of an articulate expert debugger/explainer. The

expert can not only locate studentinserted faults, but can also explain its

strategy in diagnosing the problem.

One of the system's weaknesses is its inability to take an active role in

correcting student errors. Since the program is designed to be reactive to

the student, it cannot take the initiative to explore students'

misunderstandings or suggest new approaches. Section IV discusses more recent

research directed toward correcting this weakness.

BUGGY (1978) and DEBUGGY (1981)

More a diagnostic tool than a tutor, BUGGY was developed by John Seely

Brown, Richard Burton, and Kathy M. Larkin at BBN to diagnose a child's

misconceptions about simple arithmetic operations. Its diagnostic

capabilities go beyond simply determining whether or not a student has

mastered a skill; BUGGY is able to construct a detailed model of the student's

knowledge of basic arithmetic.

The system is based on a theory of student errors that departs radically

from the usual view of mistakes, namely, that these are caused primarily by

careless or erratic behavior. Brown and Burton's (1978) alternative view can

be called a "programming" model of student problemsolving behavior; they

argue that students, like computers, are extremely good at following
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procedures, but that sometimes there are faults in these procedures, just as

there are bugs in computer programs. BUGGY enables teachers to improve their

skills in diagnosing systematic errors in their students' work.

The program represents the skills of subtraction and addition as a

collection of subskills (for example, knowing how to subtract a larger digit

from a smaller digit). These subskills are written into the system as

subprocedures and are linked together in a procedural net (discussed in

Section II). If all the subprocedures in the procedural network are correct,

then BUGGY will do subtraction problems correctly. If, on the other hand, the

procedural network contains one or more faulty subprocedures, then the program

will produce systematic errors.

A student model containing faulty subprocedures can be used as a

diagnostic tool for discovering the bugs that cause a student's errors. The

model can also be used to help train teachers in diagnosing student bugs by

playing the part of a student with faulty subskills,. When BUGGY is used to

diagnose a student's errors, the program searches its knowledge base for every

combination of correct and incorrect subprocedures which will account for all

of the student's answers, both right and wrong. Modification of the original,

correct procedural net is accomplished by systematically replacing correct

subprocedures with incorrect variations until a consistent student model has

been constructed.

The program currently contains 110 primitive faulty subprocedures for

subtraction. However, some errors are the result of more than one simple bug.

BUGGY research has identified 20 common "combination" bugs, consisting of two

faulty operations; combinations of three or more bugs were found to contribute

to "combinatorial explosion" (see Part II), were thought to be relatively rare

in actual student performance, and were therefore ignored for purposes of the
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program.

BUGGY can also be used to train teachers in diagnosing student errors.

The program presents a teacher or a team of teachers with a series of mathe-

matical errors and asks them to construct a theory about an underlying bug.

Teachers are then given a number of problems to see whether they can predict

the faulty answers a student with this bug would give. If the teachers'

theory is inadequate to explain the series of errors, they can try again,

constructing new problems for the program to solve and using these buggy

"solutions" to reformulate their theory. When the teachers indicate they are

ready to try out their revised theory, BUGGY provides them with a new set of

problems on which to predict student errors. The program concludes that the

correct diagnosis has been made when teachers provide it with at least five

correct predictions.

The use of procedural networks to represent well-defined subject matter

such as arithmetic facilitates the decomposition of skills into subskills and

the construction of student models. In contrast to overlay modeling, which

represents student skills as a subset of expert problem solving skills (see

Section II), the procedural network approach views student behavior as a

deviation from correct procedures. Such an approach seems justified by the

types of mistakes students learning arithmetic operations typically make.

DEBUGGY, developed by Richard Burton at Xerox Palo Alto Research Center,

is an extension of the BUGGY work. Based on their experience with BUGGY,

Burton and his colleagues decided to investigate one procedural skill in depth

rather than attempt to examine two or three subject areas simultaneously. The

procedural skill they chose was multi-digit subtraction. The DEBUGGY

diagnostic system is able to construct much more sophisticated ,r_odels of

student behavior than BUGGY (Burton, 1982).
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DEBUGGY analyzes a student's solutions to a set of problems and places

each student in one of four diagnostic categories. First, it grades the

student's problem set. If.the student makes no mistakes, he or she is placed

in the "Correct" category. Then, the program searches for the set of bugs

that best fits the student's errors. If the fit is good, the student is

placed in the "Buggy" category; if not, the system must decide whether the

student's errors are few enough to be diagnosed as unsystematic "performance

slips." Alternatively, if there are too many errors, the system labels the

student's behavior as "Undiagnosed," which indicates that a human teacher

should intervene as diagnostician (VanLehn, 1981).

DEBUGGY has performed impressively as a diagnostic and research tool.

Human experts sometimes disagree with its opinions, but no more than they

disagree among themselves. However, it has proven to be less effective as anf

educational instrument. For one thing, teachers are not prepared to use its

diagnostic capabilities, in part because the concept of bugs is foreign to

them. For another, building a database on subtraction bugs has been time

consuming and difficult. A similar effort would be required for each new

procedural skill--a daunting prospect even if one were to consider only the

domain of basic arithmetic. (In Section IV, more recent research building on

BUGGY and DEBUGGY is discussed.)

GUIDON (1979)

Designed to teach diagnostic skills to medical students, GUIDON is a

tutorial version of MYCIN, an expert system that provides consultations on

infectious disease diagnosis and therapy (Shortliffe, 1974). Like SCHOLAR,

GUIDON is a mixedinitiative tutor; it plays an active role in choosing

knowledge to present to a student, based on his or her competence and

interests. The goal of its developers has been to study the problem of
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transferring machine-based expert knowledge to learners(Clancey, 1982).

MYCIN interacts with physicians in much the same way that medical

specialists do: it asks questions about the patient and provides advice about

therapy. Its knowledge is represented in the form of conditional sentences,

called "production rules," that provide information about what to do in a

given situation. A principal feature of this type of representation scheme is

the separation of the knowledge base from the interpreter that guides its use.

This separation allows the system's knowledge to be used as both expert

consultant and tutor.

In addition, the production rule formalism used in MYCIN can generalize

to domains other than medicine. Because the knowledge base is separate from

the interpreter, detailed rules about a new domain can be substituted for

medical knowledge to create a niw expert system with the same meta-knowledge.

(The domain-independent package, consisting of rule interpreter and

explanation module, is called EMYCIN, for "essential MYCIN." Its production

rule formalism has been shown to work successfully in other domains, such as

providing advice on structural analysis problems in chemistry, interpreting

pulmonary function tests, and recommending drug therapy for psychiatric

patients.)

Production rules provide a flexible and easily understood

representation of facts in the domain and the relations among these facts.

The following is typical of the approximately 450 rules contained in GUIDON's

knowledge base: "IF (1) the gram stain of the organism is gram negative, and

(2) the morphology of the organism is rod, and (3) the aerobicity of the

organism is anaerobic, THEN there is suggestive evidence (0.6) that the genus

of the organism is Bacteroides" (Clancey, 1982). Evaluations have shown that

MYCIN's ability to treat meningitis and bacteremia is equal to that of the
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infectious disease faculty at the Stanford University Medical School (although

the program's ability to diagnose degrades rapidly outside of its narrow

specialties).

In addition to MYCIN's expertise, GUIDON contains three other major

components. First, the program has knowledge about dialogue patterns that

enable it to understand the student and to generate utterances. Its dialogue

capabilities are based on studies of discourse in AI (e.g. Winograd, 1977),

which suggest that "there are places in a discourse where questions make

sense, others r'here explanations are expected " (Bruce, 1975; quoted in

Clancey, 1982).

Second, GUIDON has an augmented knowledge base consisting of frames (see

Section II), annotations to the rules, and the factors used by rules. For

example, the program contains canned-text descriptions of every lab test in

MYCIN, including descriptions of how each should be performed as well as

explanations of how a given factor leads to a particular infection. For

example, the frame associated with the factor "a seriously burned patient,"

explains "that the organisms originate in the air and grow in the exposed

tissue of a burn, resulting in a frequently fatal infection" (Clancey, 1982).

Third, the program has knowledge of the context in which communication

takes place. One major component of this context has to do with the student's

intentions and level of knowledge. GUIDON uses an "overlay model" to rep-

resent the student's knowledge, which it views as a subset of the expert

system's knowledge.

A second major component of the communications situation consists of two

interconnected modules: a "case syllabus" (a lesson plan of the topics to be

discussed in each case), and a "focus record" (to keep track of the factors in

which the student has shown interest). Such knowledge of the communications
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situation is used to control the use of dialogue patterns by the program.

A student's input can take the form either of menu options or of simple

English phrases that are parsed using keyword analysis and pattern matching.

A tutorial session begins with a student describing the kind of case he or she

wants to learn about, say, a "ourned meningitis patient." GUIDON selects a

case that meets this description and provides initial information. The

student is then expected to ask questions in order to elicit further

information.

If the student does not know how to proceed, he or she can ask for help.

The program may respond, "Try to determine type of infection." Here the tutor

has set a goal--"determine typ- of infection"--and will use it to evaluate the

student's questions in this portion of the dialogue. The question, "What's

the patient's white blood count?" will be judged to be relevant to the above

goal, and the program will provide the requested data. If, on the other hand,

the student's question is judged to be irrelevant, GUIDON will indicate this

and suggest another line of questioning. The program's use of a

"goal-directed dialogue" enables it to keep track of the student's performance

as he or she solves the problem and to provide appropriate assistance.

The program is able to update the overlay model of the student. When the

student proposes a hypothesis, GUIDON will ask a number of true-false, fill-

in, and multiple-choice questions to evaluate the extent of the student's

knowledge. Information gathered in this way is then used to revise the

system's model of the student.

In contrast to some other intelligent tutors, GUIDON does not contain

multiple forms of knowledge representation. Its developers concluded that,

given the nature of the reasoning that is required in diagnosing and treating

infectious diseases--students (and physicians) need to evaluate empirical
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information, rather than construct arguments about causal processes--a rules

based representation scheme is sufficient for instructional purposes.

As a result, MYCIN provides "cookbook" responses to data and makes no

attempt to explain data in terms of physiological mechanisms. Moreover,

MYCIN's expertise operates in a "closed" world. Unlike WHY, for example,

which can handle questions about things it does not know explicitly by

reasoning about the extent of its knowledge, GUIDON tutorials are limited to

one hundred cases; and all the data that are relevant to their solution are

already contained in MYCIN's knowledge base.

Furthermore, in contrast to WEST (see below), which is able to rank each

student response (or move) according to whether it is superior or 4nferior to

other alternatives available to the student, GUIDON does not contain a model

for ordering, the collection of dat-.. The reasin for this omission has to do

with tie current state of medical problem solving. While medicine has

conventions about the kind of ,outine data to collect, there is no consensus

about how to order the search for information; medical diagnosis remains

somethiLg of an art and, therefore, so does medical instruction.

The "intelligence" of CTJIDOr s tutoring component resides in its ability

to select topics and to focus the instructional dialogue, both 4mportant

characteristics of good teaching. Now domainindepender- its tutorial

strategies are remains to be testEcL, (More recent work by Clancey on NEOMYCIN

is discussed in Section IV.)

WEST (1978)

WEST is a coach for the children's game, "How the West Was Won," which

was originally designed at Project PLATO (see Section I) to give students

drill' and practice in arithmetic. The program attempts to integrate an
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exploratory learning environment--a game--with a coach, in order to explore

the uses of coaching as an instructional strategy, particularly in situations

where most of the control resides with the student rather than the teacher.

In contrast to the more structured setting of tutorials, games provide an

informal, flexible, and (,:ien-ended environment for children to exercise their

problem-solving skills; whatever learning takes place comes as an indirect

consequence of the child's play. One major benefit of learning within the

context of a game is motivation; a child may then carry over his or her

newly-acquired problem-solving skills to other domains.

The open- erdedness of an instructional game, however, does present

problems for the teacher. For example, the instructor must pay close

attention to student choices in order to steer players away from gross errors,

to help them perceive their misconceptions and sub-optimal tactics, and to

suggest alternative strategies. Also, the game must be designed in such a way

as to allow students to exercise their initiative and control, to make

demonstrable mistakes, and to learn from their mistakes.

For a game to be an effective learning activity, an expert advisor is

needed who acts as guide and observer, who can explain student errors and

suggest more effective strategies, and who knows when to intervene and what to

say at the appropriate occasion. This is the type of role usually assigned to

a coach. WEST is a program designed to play such a coaching role. Central to

its pedagogical approach, which can be described as "guided discovery

learning," is the notion that one of the most important aspects of a learning

environment is the degree to which the student is allowed to learn from his or

her mistakes.

The creation of WEST required solutions to two major problems: When doesa

coach interrupt the student? What should a coach teach when intervening?
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WEST contains both the capability to construct a student model and a set of

tutoring principles that provide guidance for interrupting and advising a

student.

The program's ability to construct a diagnostic model of the student is

constrained by the gaming environment: WEST cannot make use of prestored tests

or pose diagnostic questions (since these would interfere with the flow of the

game). Instead, the program must infer the student's misconceptions and weak-

nesses from whatever he or she does while playing. This diagnostic strategy,

however, results in some ambiguity. When a student fails to employ a par-

ticular skill, whether this is due to the student's ignorance or to some other

reason is not always clear. Thus, the absence of a skill has diagnostic value

only if an expert would always have used it in a similar situation.

WHY performs its diagnosis by comparing the student's behavior with what

its computer-based expert would have done in the student's place. In order to

carry out this strategy of "differential modeling," the program must evaluate

the student's move in relation to a set of possible alternative moves the

expert might have made. WEST must also determine the underlying skills that

went into the selection of the student's move as well as each of the better

moves of the expert so that advice can be given which will improve

performance.

WEST employs a black-box representation of its knowledge domain in

conjunction with a set of "local" glass-box experts (see Section II for a

discussion of glass-box and black-box experts). The black-box expert is used

to determine the set (-,f possible moves that the student could have made, and

the glass-box mini-experts help to diagnose the causes of the student's less

than optimal behavior. As a rule, an articulate expert, which can explain

each problem-solving decision it makes in terms that a student can understand,
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makes for a better coach than an inarticulate expert. However, a glassbox

expert is often less efficient than a blackbox expert in evaluating student

moves, an activity which requires a great deal of computation. WEST augments

the more efficient and robust blackbox expert with small pieces of an

articulate expert which are used to indicate when some intervention is

justified.

The skills and concepts a student is expected to master determine what

parts of the student's behavior are monitored by the coach. Each skill

represents a portion of the articulate expert and has an associated

recognition and evaluation component. The recognizer is used to watch the

student and creat' a model of his or her behavior; the evaluator uses a

comparison between expert and student models to decide if the student is weak

in that skill. If it is determined that a particular skill is lacking, the

coach presents an explanation together with a better move that illustrates

that skill's use.

The program uses some fifteen pedagogical principles to guide its

coaching behavior. Perhaps the most important of these principles is that

which specifies four distinct levels of hints when a student requests aid. In

response to the first request for help, the coach locates a missing skill that

is required at this particular point in the game and suggests its use. The

second request for help causes the program to provide the student with a

complete set of possible moves. The third request for help results in the

coach selecting the optimal move and explaining why it is optimal, while the

fourth request causes the coach to describe how to make the optimal move.

The sophistication of WEST is limited by the simplicity of the game

within which the coach is embedded. Further work by Burton and Brown has

centered on more complex learning situations (see part IV).
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GEOMTRY. TUTOR (1985)

The Geometry Tutor is one of two ICAI systems currently under development

by John R. Anderson and his colleagues at Carnegie-Mellon University (the

other is the LISP Tutor). The intent of the Geometry and LISP Tutor rese-rch

is to understand how students arrive at solutions to problems, and what the

major difficulties are in developing problem-solving skills, in order to

develop a tutoring system that helps students acquire these skills. The

tutors are being used to test a general theory of skill acquisition and to

establish a set of guidelines for designing tutoring systems in other domains

that also require problem solving (Boyle and Anderson, 1984).

Anderson and his colleagues base their work on the observation that

private human tutors are much more effective than either group csassroom

instruction or standard CAI; indeed, their findings indicate that tutoring is

at least twice as effective as the other two approaches (Anderson, Boyle,

Farrell, and Reiser, 1984). Where the Carnegie-Mellon group differs from some

other ICAI researchers is in its approach to the modeling of tutoring

expertise. Stevens, Collins, and Goldin (1982), for example, apply expert

systems techniques to the building of *utoring programs. They view the human

tutor as an expert whose knowledge can be extracted and represented in an

instructional system. This is the technique used in both SCHOLAR and WHY.

Anderson and his colleagues argue that human tutoring is too diffuse a

skill to be subjected to knowledge engineering techniques. Unlike other

better specified domains, there is too much variation among tutors--and no

crystallized expertise--to be modeled. Much of ICAI research spar'

Anderson's view: instead of trying to mimic en actual human tutor, Itsearchers

have tried to take principles of effective tutoring from instructional theory

and to embody these principles in machine-based tutors.
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The GEOMETRY TUTOR is based on a detailed cognitive model of how students

solve problems and learn. The system attempts not only to solve geometry

proofs, but tries to do so the way a successful student would. This "ideal"

student model consists of a set of production rules which recommend particular

rules of inference when specific conditions prevail.

The tutor uses a differential student modeling approach: expert and

non-expert behaviors are represented as two distinct sets of production rules.

When a bug occurs, the system measures the difference between the rules used

by the ideal model and those used by the student to determine the student's

weaknesses. The system then presents remedial material intended to overcome

these deficiencies. The goal of the instruction is to reduce the differences

between the expert's set of rules and those used by the student.

The system is guided in its tutorial strategy by the student model and a

set of eight instructional principles. Among the most important of these

principles is that effective problem-solving behavior, including the

construction of proofs, involves the decomposition of major goals into

subgoals and an iterative two-directional search for solutions--forward from a

set of initial conditions to the final goal, as well as backward from the

proposition to the givens. Other principles guiding the tutor's behavior are

that students learn better if instruction takes place in a problem-solving

context; that immediate feedback on errors keeps the student from wasting a

lot of time pursuing wrong strategies; and that problem solving is facilitated

if the student is not required to keep in mind every step of the solution.

The system has been shown to be effective in preliminary tests with a few

students of varying abilities. For the good student, the program provides a

way of keeping track, on the screen, of all inference steps taken as well as

the capability for catching performance slips. More importantly, the tutor
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can provide the poor student with help by suggesting inference strategies when

he or she does not know how to proceed. The system can respond either to a

request for help or to an inappropriate use of a rule by means of pop-up

windows. These windows display applicable rules and their definitions. In

addition, when the student makes a mistake, windows are used to explain why it

was a mistake. The system can interrupt the student while he or she is making

an error, suggest more appropriate inference steps, and question the student

to make certain the step is understood.

Many of the design issues surrounding the construction of the Geometry

Tutor have had to do with human factors: where to position material on the

screen; what abbreviations to use; when to correct misspellings; how to let

the student point; how to design the student-system interface; how to relate

proof structures to the diagram that accompanies the proof. Solutions to

these problems have had very little to do with theory and a great deal to do

with trial and error. It was found, for example, that the tutor is more

effective if the student first spends an hour or so practicing on the system a

more familiar area such as arithmetic. The student can thus learn how the

system works without also having to worry about new subject matter.

The major linitation of the approach used by the Geometry Tutor

(acknowledged by its developers) is that it requires a domain in which an

ideal student model can be completely specified. That is, only in such areas

as high school and early college math, and introductory programming, can we

determine ahead of time exactly what the student is supposed to do.

Conclusion

The main focus of early ICAI research was on developing the basic

techniques for building intelligent tutors: finding effective strategies for
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representing expert knowledge, for understanding the student's strengths and

weaknesses, for selecting appropriate teaching strategies, and for

communicating between user and machine. When this research effort was coupled

to a serious instructional application the program was typically limited to a

domain outside the K-12 curriculum -- for example, electronic engineering

(SOPHIE) or medicine (GUIDON). The programs that dealt most closely with the

conventional school curriculum had to do almost exclusively with basic

arithmetic operations, as in WEST and BUGGY. Other programs, such as SCHOLAR

and WHY, which covered non-arithmetic topics, were intended more as

explorations of what constitutes good tutoring than as direct contributions to

the elementary or secondary classroom.

Current ICAI research is paying much closer attention to the K-12

curriculum. In addition to Anderson's work in geometry, programs now under

development include tutors in fractions (Lauren Resnick, Learning Research and

Development Center-University of Pittsburgh), physics (Joan Heller and

Frederick Reif, University of California, Berkeley), and organic chemistry

(Jill Larkin, Carnegie-Mellon University). (Much of this work is too

preliminary to be reviewed here.) At the same time, researchers are

continuing to focus on a wide range of ICAI issues, and are using prototype

programs as laboratories for basic research on knowledge representation, the

nature of meaning and cognition, and the characteristics of good tutoring.
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SECTION IV: ASSESSING INTELLIGENT COMPUTERASSISTED INFTRUCTION

So far, this study has presented an overview of ICAI to date. The

historical evolution of the field has been delineated, the nature of ICAI

discussed, and examples of typical systems described. The next two sections

offer a forwardlooking perspective: present directions of research,

capabilities and limitations at the current state of the art, and long range

implications for schools. The intent is not to present an exhaustive review

and synthesis (which would be beyond the scope of this paper), but instead to

indicate illustrative emerging issues in AIbased educational tools.

MAJOR THEMES IN CURRENT RESEARCH

In section two of the study, four major components of ICAI systems were

described: modules incorporating the knowledge base, student model, pedagogy,

and communications. Separation of functions is one of the major design prin

ciples in AI, since this facilitates individualization, modification, and

generalization. Of course, the boundaries created are to some extent

arbitrary; in ICAI, all four components blur together in the actual process of

teaching. Within each of these overlapping areas, what types of research are

now in progress?

Expertise Module

How can one enable a device to understand what it is teaching? The

problem is more complex than giving the computer a set of interconnected con

cepts and skills--though that is difficult enough. Because AI is the study of

"dynamic" intelligence (the process of intellect), the ways in which the
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machine structures its conceptualization (metacognition) are as important as

the content of its thinking.

In ICAI, this issue poses significant challenges, because the computer

must reflect human-like thought patterns if students are to understand the

cognitive strategies P.L. models. The expertise in an Instructional technology

must be "articulate." Ideally, even if the tutor or coach actually solves

problems using "black box" (cognitively opaque) methods for reasons of

effciency and robustness, the device also would have v "glass box"

(transparent to people) reasoning mechanism in its knowledge representation.

Thus, what a computer knows, how it thinks about its knowledge, and the extent

to which its cognitive processes are comparable to those of humans are all

important.

Another major aspect of knowledge-based system design is that "in the

I

knowledge lies the power" (domain-specific information and skills are more

1

crucial to expert problem solving than general concepts and reasoning strate-

gies). This principle implies that the knowledge base for each specialized

subject must be tailored, incorporating detailed ideas and processes rather

,..

than simply a broad theoretical orientation and generic inference tools. This

has made the ICAI development process time-consuming, as--for each narrow

domain--explicit representations of expert cognition must be conceptualized

and programmed into specialized coaches and tutors.

An ICAI expertise module, white, necessarily narrow in its content domain,

serves a variety of functions. Educational applications demand a knowledge

representation which facilitates access, reasoning, planning, problem solving,

pattern recognition, communication, acquisition /expansion, hypothesis genera-

tion/evaluation, and question answering. No single method of encoding content

can maximize all these capabilities--each purpose might have a different

56

59

.0*



optimal representation--so multiple strategies for incorporating information

are needed in a single program.

Unlike an expert system, educational applications also require a mix of

declarative (what), procedural (how), and metacognitive (thinking about what

and how) knowledge. Historically, semantic nets and schema-based coding

strategies have been used for descriptive representation, while production

systems, rule-based methods, and simulation approaches have modeled process

information. Finding ways to combine the strengths of both these

representation types in an overall metacognitive structure is a major field of

research within knowledge based systems in general. Tools such as object

oriented languages (e.g., SMALLTALK) and truth maintenance (constraint-based)

systems are facilitating work toward this goal (Borning, 1981).

All these themes have implications beyond ICAI and are currently being

explored from a variety of AI perspectives. Three illustrative areas of

research focus on the nature of expertise, the transfer of meaning, and the

sequencing of knowledge.

Characteristics of Expert Cognition

Being expert in a limited domain involves the following characteristics:

doing things most practitioners cannot, being smooth and efficient, usthg

specialized knowledge and methods, and having rapid information-sorting

skills. Researchers studying expert performance have noted that the cognitive

processes involved seem to be as much recognition as reasoning (Clancey,

1984). Based on years of practical experience, the expert rapidly relates the

current situatim to a pattern previously encountered. Only when the immedi-

ate problem seems novel does he or she fall back on theoretical concepts and

inductive strategies (Larkin, 198u).
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In the early stages of learning a field, tiany experiences are new and

must be thought through. With time, patterns of association begin to develop

and, in the expert, eventually become "compiled" (indexed into

condition /action pairs via chunking of perception as an aid to short term

memory) (Shiffrin and Dumais, 1981). These contextually stimulated pattern

responses become linked to behavioral scripts that the expert follows.

Expertise becomes an increasingly automatic, intuitive process of rapid

access to specialized, interconnected information. Skills in situation

recognition, standard problem solving, and dealing with novel developments are

necessary. These require a mixture of deductive, schematic, and heuristic

knowledge (Johnson, 1982).

In knowledge engineerinb (transferring skilled problem solving from per-

son to machine), this automaticity of expertise is a major challenge. The

"authentic" knowledge of experts is "tacit," since compiled, intuitive cog-

nition is difficult to communicate to others. Often, what the expert can

verbalize is "reconstructed" knowledge (similar to the expositions given in

textbooks). These general rules of thumb, while useful, do not convey the

ability to make rapid decisions in a particular situation.

Authentic knowledge can be studied by monitoring how an expert approaches

a "veridical" task: a problem representative of situations actually encoun-

tered in the field. (This would contrast with a "nonveridic21" task, such as

the structured problems at the end of a textbook chapter.) The goal of the

knowledge engineer becomes to synthesize reconstructed knowledge (which an

expert reports) and authentic knowledge (from observational tracing of the

expert's thought processes) into "mechanically optimized" representations for

computer problem solving (Johnson, 1984).

Some researchers have studied the incorporation of domain-dependent
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expertise into knowledge representations. EXCHECK uses inference procedures

characteristic of professional mathematicians to understand proofs (Blaine and

Smith, 1977). Standard problem solving approaches can be made more

comprehensible to students by incorporating in the expertise module a formal

language unique to that subject material which describes the main steps in the

algorithm being used (Sleeman, 1977). Studies of how skilled readers form a

complex inferential model to understand textual material can facilitate the

development of sophisticated comprehension programs (Collins, Brown, and

Larkin; 1979).

The inclusion of metacognitive skills in the expertise module has also

been researched. Systems such as SCHOLAR (discussed earlier in part three)

include imprecise, incomplete, and uncertain kr, %/ledge. This enables the use

of sophisticated inferring and problem-solving approaches (Collins et al.,

1975).

Context-free problem solving grammars, based on taxonomies of planning

and error correction, provide a language for communicating useful strategies

(Miller, 1982). Kimball (1982) and O'Shea (1982) describe tutors capable of

self-improvement it. subject-domain understanding through interaction with

students. Control knowledge of goals and tasks is important in implementing

any metacognitive strategy (Anderson, 1983).

Research on the nature of expertise has generates a number of questions

important in developing ICAI systems. While "black box" portions of the

knowledge representation can utilize mechanically ol:timized cognitive

strategies, what mixture of reconstructed and authentic reasoning should be in

the "glass box" model? How can the tacit knowledge--both domain dependent and

metacognitive--of experts most efficiently be incorporated into an

instructional knowledge base? What level of procedural justification must be
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incorporated in an expert problemsolver to produce explanatory capabilities?

The XPLAIN (Swartout, 1983) and NEOMYCIY (Clancey, 1983) systems are two

interesting approaches to resolving these issues.

To what extent should students be trained to be experts (as opposed to

practitioners), and what does this say about the mixture of deductive,

schematic, and heuristic knowledge they need? If expertise is ultimately

based on years of practical experience, how much can a "learning by doing"

AI-based tool foster such skilled performance? What mixture of verid!:al and

nonveridical tasks should be used in transferring expertise from tutor or

coach to student? These illustrative questions indicate the range of ICAI

issues raised by the study of expert cognition.

The Nature of Meaning

Researchers believe that the learning, recall, execution, and adaptation

of complex procedures are enhanced by conveying multiple levels of meaning.

Four illustrative dimensions on which a process can be understood are 1)

mental models of how it works, 2) the tasks and goals it accomplishes, 3) the

strengths and limits of its user, and 4) its larger context of related

procedures. Together, these types of meaning form a web of semantic

rationalizatio...3 that is the foundatio- of understanding (Brown, 1982).

Mental models of how a system works represent its parts, functions, and

interactions. Comprehending common sense physical reasoning requires

qualitative thinking about processes, their effects, and their limits (Forbus,

1983). "Envisioning" a situation in this way aids decisionmaking by

forecasting future events through an underlying conception of how the system

functions (de Kleer and Brown, 1983).

People seem to use qualitative causal reasoning to envision systems; this
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integrates structural, functional, and constraint-based types of models. Such

an approach combines the benefits of detailed mechanistic analysis,

teleological (designed purpose) clues (Van Lehn and Brown, 1980), and

inference from global behavioral limits (Kuipers, 1982). The SOPHIE system's

knowledge representation utilizes this type of sophisticated reasoning model

(Brown, Burton, de Kleer; 1982), as does the STEAMER simulation (Stevens, et

al., 1981).

Understanding the causal order of events allows comprehension first of

the basic behavior of subsystems, then of the system as a whole. When the

situation being studied is complex, people tend to adopt simplified versions

of qualitative causal reasoning. Using "rationalized hypothetical

reconstruction," a "kernel model" that refle._ts the basic behavior of a system

gradually is modified to predict more complex behaviors as sophisticated

features are added.

Mental models promote i understanding of the connection between

structure and function in a system, as well as making assumptions explicit and

building up a knowledge of how the system behaves. Procedural skills related

to the sy.,Gem then can be applied with full awareness of their causal meaning

and a sense of their underlying theoretical justification. This is an

important type of understanding for a knowledge base to contain.

The tasks and goals accomplished in a system by a complex procedure

supply a second dimension of meaning (Genesereth, 1982). Understanding the

goal structure of a task helps uens comprehend how the subprocedures within a

process are accomplishing portions of the task and why the overall procedure

follows a specific temporal pattern. Also, the systemic context imposes

constraints on how tasks can be completed, giving a rationale for why the

procedure has a certain structure. In addition, "boundary tasks" (barely
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achievable in the system) indicate the limits within which a procedure may be

used. (The metacognition references discussed in the "nature of expertise"

section give more detail on artificial intelligence approaches to issues of

goals, planning, and control.)

Human strengths and limits provide a third dimension of meaning for

complex procedures. Size constraints on short term memory impose a cognitive

load that can slow down execution of a procedure, so processes are often

designed to minimize the data that the user must track internally. Mnemonic

(memorable) patterns of organizing procedures provide a means for ensuring

that all parts of the process are remembered. Wickelgren (1976) and Tulving

(1983) provide overviews of cognitive retention issues.

With practice in using a procedure, the user will remember previous

errors, developing an "event-based semantics" (expertise as recognition) to

reduce mistakes. Physical contraints on human performance also shape

procedural design. These cognitive factors provide an important context for

understanding why a process has a certain structure.

Finally, the procedures to which a'given process is related supply an

overall framework of meaning. Learning and usage are enhanced if a procedure

is .inked to others already understood. Error checking, prevention, and

recovery portions of a process connect its purpose to the larger operational

and social context (Brown, 1982).

The web of semantic rationalizations created by these four illustrative

dimensions of meaning has numerous implications for ICAI. What mix of types

of meaning is optimal in transferring understanding of a complex procedure

from tutor or coach to student? How can "learning by doing" be designed to
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build envisioning of a system and qualitative causal reasoning about its

dynamics? What types of "kernel models" would be most useful in aiding

instruction?

How can metacognitive expertise on tasks and goals for a complex

procedure be accumulated and incorporated into knowledge representations?

What types of cognitive research on human strengths and limits are needed?

How should the learning of processes be sequenced to maximize links to

previous procedures and interconn ction into an overall framework of semantic

rationalization?

Sequencing of Knowledge

The design of an ICAI system's expertise module is influential in

determining the nature of its student and pedagogical models. The user of a

coach or tutor often is simulated via subsets, simplifications, or deviations

of the expert's knowledge. Similarly, the teaching module's choice of

information to convey is limited to items from the knowledge representation.

How these pieces of knowledge are sequenced in instruction is determined by

the developmental level and current comprehension of the student, by the type

of teaching method being used, and by tt evolutionary structure of

information within the expertise module.

This evolutionary structure forms a "syllabus" of knowledge from which

the tutor or coach can select (Goldstein, 1976). Subsets of the expert's

knowledge are sequenced to reflect progressive difficulty and prerequisite

constructs. For example, "scripts" which link knowledge into functional

explanations are the approach used in WHY to creating syllabi (Stevens,

Collins, Goldin: 1982). Metacognitive rules for simplification within the

knowledge representation can aid in creating intermediate learning
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environments (similar to the kernel model discussed earlier under meaning) and

in summarizing complex explanations. The goal is to provida the learner with

"frontier knowledge" which builds on the edges of what is currently

understood.

"Genetic graphs" offer one research approach to incorporating syllabi in

the expertise module. The term comes from Piaget and uses "genetic" in the

sense of "source and growth"; he thought of himself as a genetic

epistemologist (the origin and development of knowledge). Expert behaviors

can be analyzed in terms of tasks, which may be conceptualized as a

curriculum-like series of topics. As novices accumulate experience and

wisdom, their knowledge moves along this network of increasingly sophisticated

strategies for problem-solving. A "model" path representing the natural

progression of an average learner can be postulated (diSessa, 1982).

The links which connect these clusters of problem-solving approaches may

be thought of as evolutionary relationships (Goldstein, 1982). One set of

strategies may suggest another via generalization/specialization, analogy

(Douglas and Moran, 1983), deviation/correction, or simplification/refinement.

Such a theory builds a bridge between expert-based and learner-based paradigms

for ICAI, combining the developmental and cognitive attributes of the student

with the intrinsic characteristics of the knowledge base.

The incorporation of syllabi into ICAI expertise modules raises a number

of questions. How can "relative difficulty" and "prerequisite" be determined

for different populations of learners? To what extent are simplification

rules domain independent? What diagnostic information can be gained from

individual deviations off the model path? How can the metacognitive skills

represented by evolutionary links in the graph best be developed? Much

research in cognitive science is needed to resolve these issues.
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Conclusions

Regardless of interest in ICAI, studies on ways to represent knowledge in

computers will contint,e; this area is linked to the commercial possibilities

of expert systems as well as to many fundamental theoretical issues in

artificial intelligence. Research in knowledge-based systems goes far beyond

the range of illustrative topics covered above.

However, the development of expertise modules for computer coaches and

tutors depends on more than general advances in knowledge-based systems. The

questions delineated earlier are specific to educational applications of

artificial intelligence and will require targeted research and funding for

their resolution.

Student Mode'

Early ICAI programs adapted to individual learning situations by using

stereotypic models of the pupil. As the power of computers and of artificial

intelligence techniques has increased, the goals of student modeling have

become more ambitious: prediction of the learning behavior of individual users

and diagnosis of the causes of errors. These goals require an internal model

of the learner, which must represent cognitive processes (such as information

retrieval, calculation, and problem solving), metacognitive strategies f.-.R.,

learning from errors), and psychological attributes (developmental level,

learning style, interests). In building this learner representation, the

intelligent coach or tutor uses four types of evidence: implicit (from

student behavior in problemsolving situations), explicit (based on dialogue

between ICAI devices and pupil), structural (from intrinsic complexity

relations amen': knowledge representation skills), and background (based on

estimates of average learner proficiency) (Carr and Goldstein, 1977).
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A studf.nt model of this sophistication neceslitates an even more complex

representation than the simulation o' expertise discussed earlier.

Psychological capabilities and style must be added to cognitive and

metacognitive skills, and the full spectrum of mental configurations on these

three dimensions over tne user population must be incorporated. While some of

the challenges this poses can be resolved by modeling the student as a subset,

simplification, or deviation of the expert's knowledge, other aspects require

extensive study of learner characteristics and new representational

approaches.

Rich (1983) gives three dimensions on which user models can be

classified:

--a model of a single stereotype-user versus a collection of models of

individual users

--models specified by the user or systems designer versus models inferred

by the system baseu on the user's behavior

--models of long-term user characteristics versus models of the current

task

In addition, the nature and form of information contained in the user model

and the inference engine needed to interpret that information constitute a

fourth important dimension (Sleeman, 1984a).

All ICAI systems incorporate a collection of user models based on

inferred behaviors, so fall into the second category of the first two

dimensions. The other two dimensions are useful in differentiating types of

intelligent tutoring and coaching programs. In this paper, however, the focus

will be on illustrative areas of research in the nature of student knowledge,

errors, and learning.

Student Knowledge

If a coach or tutor can compare the pupil's understanding of the subject
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to its own expert representation, then instruction can center on transferring

the missing or distorted portions of the knowledge base to the learner. One

approach to student modeling is to visualize the user as an "overlay" (subset)

of the articulate expertise in the ICAI program. The internal representation

of the learner becomes a set of hypotheses regarding the student's mastery of

the knowledge base.

As the user responds to instructional questions and situations,

conclusions about the pupil's current understanding can be drawn. The

accuracy of these hypotheses about comprehension can be tested by diagnostic

initiatives which compare the student's responses to those which the expert

module would generate given only the knowledge in the pupil subset. The

genetic graphs discussed earlier under knowledge sequencing are a type of

overlay 2pproach (Goldstein, 1982). In the UMFE system, implementor-defined

inference rules are used to determine, with minimum intrusion, which concepts

the user knovs (Sleeman, I984a).

"Differential" models are an alternative theoretical construct. Here,

"recognizers" within the ICAI program abstract and summarize the student's

behavior in instructional learning situations, comparing the skills

demonstrated to the expertise module's responses under identical

circumstances. In this way, the issues in the subject domain the student does

not understand can be determined through inference from differential

weaknesses between pupil and expert. Sleeman and Hendley (1982) use a

comparison algorithm based on formal language statements (such as those

described earlier under domain-dependent expert representations) to create

this differential model.

An important theoretical issue here is the "apportionment of

blame/credit" (Brown and Burton, 1982). If a student does not make the best
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response, which missing issue was the cause of this weakness? (The discussion

of WEST in part three of this paper illustrates this point.) Because the coach

does not intervene via diagnostic situations as in the overlay model, "noise"

from student learning, inconsistency, or ambiguity makes construction of a

differential model more difficult.

As with all constructs which model the user in terms of the expert, if

the learner is employing a different problem solving strategy altogether, the

student representation must incorporate a way of responding to this

alternative approach. "Perturbation" models (which address this issue by

representing the student's misconceptions as deviations from the correct

skill) will be discussed below in the section on student errors. One problem

for all these types of models is "combinatorial explosion": many alternative

explanations for a given sequence of student responses.

Numerous questions for ICAI arise from research on student knowledge.

What ch-zacteristics of the subject domain, learner population, and teaching

strategy are influential in determining which type of student knowledge model

to use? Without producing an overwhelming number of possible explanations,

how can these different approaches be mixed to combine their strengths? Can

all alternative student strategies for problem solving be captured by

combinations of these types of representations? How can "noise" be reduced in

the diagnostic process while keeping the measures used unobtrusive?

Student Errors

Beyond creating a "perturbation" model for user knowledge, research on

the cause of pupil mistakes is vital in determining the best instructicnal

strategy to correct misconceptions. Studies of student errors using protocol

analysis are one means of better understanding this area (Putnam et al.,
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1984). For each domain, a taxonomy of mistakes can be defined; a student's

error pattern may then be used to diagnose missing concepts and processes in

his or her knowledge base (Steven, Collins, Goldin; 1982). interaction

between errors complicates this type of ana::sis (parallel to the

"apportionment of credit/blame" problem discussed above).

Students extrapolate "base rules" (derived from instruction and from

previous problem solving experience) to new situations. This adaptation may

occur through reconceptualizing unfamiliar problems into standard formats or

by revising rules to be ap?licable in new cases. Systematic types of errors

stemming from faulty revision and reconceptualization can be identified by

protocol analysis. The instructional response can then be directed both

toward correcting the error and toward examining the extrapolation process

responsible for the faulty adaptation (Matz, 1982).

A "perturbation" construct of "bugs" (systematic modifications in correct

skills) is one theoretical approach to modeling the results of such protocol

analysis. A procedural network to mimic learner behavior is build into the

student module. By creating a taxonomy of erroneous procedures (reflecting

the smallest possible deviations in accurate strategies from the expertise

module), a variety of "buggy" skills can be defined.

Faulty skills nre then substituted for correct procedures until the

learner model predicts student mistakes in detail. This diagnosis of learner

bugs (and interacting combinations of bugs) indicates where remediation is

needed to substitute accurate problem solving strategies (Burton, 1982). (The

discussion of BUGGY in part three is an example of this modeling approach.

Young and O'Shea (1981) use an alternative, production system method for

predicting student errors. They believe that pupil mistakes can be modeled

via a combination of correct problem solving being omitted and rules from
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unrelated domains being included. This viewpoint is closer to an overlay

model than a perturbation approach and has different psychological

implications for learning and instruction.

To the extent that students do use faulty adaptations of base rules in

new situations (as described earlier), then a "repair theory" of bugs may

synthesize the alternative constructs of deviations and mistaken

inclusions/omissions (VanLehn, 1983). When a student reaches an impasse in

solving a problem because his or her current skills are insufficient, he or

she may attempt to "fix" an existing procedure to make it usable. Such an

erroneous extrapolation of a correct procedure can produce results consistent

with both types of "buggy" theories.

The "repair" approach to student errors generates complex predictions

involving "'tar bugs" (which never occur in studies of human errors and

therefore should be impossible within the student modeling paradigm) and "core

procedures" (transmitted by instruction and used by learners as the basis from

which variants and deviations are made). The short-term instabilities in

student problem solving observed in protocol analysis are attributed to

learner experimentation with different repairs until a satisfactory mixture of

modified procedures is found. This type of student model implies that

instruction should be based on core procedures structured and sequenced to

minimize the chances of faulty student extrapolation/adaptation.

Sleeman (1984c) hypothesizes that student mis-generalization in reasoning

may be important in causing errors. To the extent that pupils adopt problem-

solving procedures by inferring generalized procedures from instructor

examples, "mal-rules" may be formed. These inappropriate strategies can be

difficult to diagnose. For example, many possible alternative types of

mal-rules may explain a given sequence of pupil errors (a combinatorial
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explosion similar to that discussed in the student knowledge section). Also,

even students who have a rote mastery of correct procedures may revert to

mis-generalization under conditions of cognitive stress, producing

fluctuations itt problem-solving behavior.

The continuing evolution of competing theories on student error has

created a number of questions for ICAI research. How generalizable are the

error taxonomies derived from protocol analysis of a particular domain? How

can problem solving be structured to redu':e the occasions on which pupils need

to attempt repairs? When a learner reaches a problem solving impasse, how can

his or her extrapolations of base rules be improved? How can instruction on

core procedures minimize false inferences? To what extent can perturbation

constructs substitute for overlay and differential models of student error?

Student Learning

Providing a general overview of learning research in motivational and

developmental psychology is beyond the scope of this paper, so the focus in

this section is on knowledge acquisition studies in cognitive science.

(Another type of research not reviewed here, but of potential interest in

developing computer tutors and coaches, is machine learning (Michalski,

Carbonell, Mitchell; 1983.) The previous section suggests that understanding

the causes of student error would lead to better principles of instruction.

Research on the "felicity conditions" underlying learning may create such a

link.

As a way of focusing attention, pupils expect the teacher to obey certain

conventions in the ,ommuniclon process (VanLehn, 1983). For example,

students anticipate that each lesson will introduce one new, simple piece of

information; that this skill will add to or substitute for already learned
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procedures; and that the information can be induced from examples and

exercises. (This last expectation is similar to the assumptions on pupil

inference and generalization in the discussion on mal-rules.)

These illustrative felicity conditions provide a model for knowledge

integration--the construction of a skill from subskills--as opposed to

knowledge compilation. The focus is the learning expectations governing the

pattern of communication from teacher to pupil. When ti .is process of

information transfer fails, students reach an impasse in problem solving and

are forced to attempt repair to their existing skills.

An alternative approach to this step-by-step model of learning from

instruction is the simulation of student knowledge acquisition by production

systems (Anderson, Farrell, Savers; 1984). Computer programs have been

developed which mimic the hierarchical organization of problem solving and the

goal-driven cognitive control mechanisms observed in protocol analysis of

pupils. In these simulations, structural analogy to concrete cases is an

important learning mechanism; acquired knowledge is then compiled in ways

similar to the automatization of expertise discussed earlier under knowledge

representation. This model suggests that the limited capacity of human

short-term memory may be a major factor in the dynamics of learning. (An

overview of production system learning models is given in Klahr, Langley,

Neches (1984.))

Other computationally related studies address the relationship of

learning to user interface design and humeri factors analysis (Moran, 1982).

F-Jr example, Malone (1982) describes design heuristics for creating enjoyable

"learning by doing" interactions between student and ICAI device; these

include use of challenge, fantasy, and curiosity. RABBIT (an intelligent

database assistant) uses a retrieve:. paradigm based on reformulation, a
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psychological theory of human remembering (Tou et al., 1982). A variety of

studies on cognitive process analysis of learning are collected in Snow,

Federico, Montague (1980).

Research on student learning has multiple implications for ICAI systems.

For a given subject, w}-at is the optimal set of felicity conditions to guide

communication between tutor or coach and student? Kyond expectations for

information transfer, what other factors are important in maximizing knowledge

integration by learners? What are the implications for ICAI design of

production-system simulations of student error and learning? What conclusions

from human factors and user interface design can guide curriculum developers?

Conclusion

Regardless of interest in ICAI, studies in cognitive science and machine

learning will continue. In general, however, research on student modeling is

heavily linked to the constviction of computer tutors and coaches. Other

AI-based educational tools (such as "idea processors" or "enpowering

environments") do not require internal representations of the learner.

As indicated above, student modeling research touches on topics at the

leading edge of artificial intelligence and cognitive science. In addition,

the advent of inexpensive devices for measuring a user's physiological

reactions may open a new and complex area of study: the sensing of learner

consciousness and mood as a component in instruction. Overall, the challenges

faced in learner representation may be the most difficult in ICAI.

Teaching Module

Given expertise in the subject domain and a model of the student's

present comprehension, an optimal intelligent tutor or coach would select an
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efficient path through its knowledge base to generate expert behavior by the

user. Initial teaching strategies, based on a prototype or on a pupil's.

previous performance, would be modified as the student model evolves. The

pedagogical strategies used might include presenting increasingly complex

concepts or problems simulating phenomena, Socratic tutoring with correction

of pupil misconceptions, and modeling of expert problem solving via coaching.

The ICAI system must have a discourse-oriented theory of explanation to

coordinate these teaching strategies. This instructional theory would

incorporate rules for which pedagogical means are most efficient to accomplish

a given end, alternative approaches to dialogue management (adjusting to

different learning styles), and domain-dependent teaching heuristics (such as

those suggested earlier in the discussion on genetic graphs). Some of these

skills can be derived from protocol analysis of expert teachers; others have

no counterpart in human pedagogy since they utilize attributes unique to

computer-based instruction (such as simulation of complex phenomena).

The responsibilities of the four ICAI modules have considerable overlap,

and many issues related to teaching have already been discussed in the

sections on expertise and student modeling. Making the knowledge base

articulate, using simplification rules (such as the kernel models described

under the nature of meaning), and sequencing subject matter involve both the

expertise and the teaching sectors of an intelligent coach or tutor. Given

this bridge to the knowledge base, the instructional component can infer the

relative difficulty of items in the syllabus and can build interconnections to

previously learned information in other domains. Similarly, felicity

conditions and the debugging of the user model link the student and teaching

modules, promoting individualization of instruction.

No universal approach to modularization exists in ICAI. One researcher
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may locate responsibility for felicity conditions in the student model;

another, in the teaching sector. This paper stresses the evolution of the

intelligent coach or tutor from expertise through student modeling to

teaching, with only the explanatory aspects of pedagogy located in this

instructional section.

No attempt has been made to summarize the vast amounts of educational

research on teaching. Such an endeavor is beyond the scope of this study, and

also much of this information is irrelevent because of its focus on group

rather than individual learning. Rather, the discussion below is confined to

recent computational and cognitive perspectives on pedagogical processes.

Paradigms for Explanation

The fundamental issues for a tutor or coach are whether to intervene in

the information flow, what to discuss, which presentation strategy to use, and

how much to say. In a learning-by-doing environment, intervention takes the

form of an interruption by the coach when a systematic pattern of error has

been spotted. In tutoring, intervention involves judging when to shift

between imparting new information and debugging the pupil's current

conceptions.

One major instructional factor identified by ICAI researchers is the

effect of discontinuous information flow on student in;_erest. Too frequent

interventions destroy student initiative and decrease motivation to learn.

Important criteria in choosing when to interrupt are relevency and

memorability; the information provided by the intervention should be directed

at a particular weakness, useful in the immediate situation, and demonstrably

superior to the pupil's misconception (Burton and Brown, 1982). (These issues

are illustrated in the discussion of WEST in part three of this paper.)
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When an interruption is indicated, Lhe choice of what to emphasize

becomes the next fundamental issue. Means-end guidance rules can be used to

relate errors found in the student model to the selection of experiences which

will remove those misunderstandings (O'Shea, 1982). These rules reinforce

mastery by gradual accumulation of progressively more difficult knowledge.

This can invulve multiple types of explanation; here, genetic graphs can be a

means of deriving alternative examples and illustrations closely linked to

previously learned knowledge (Goldstein, 1982).

Sometimes, choice of content involves more global issues than responding

to a particular pattern of student error. For example, at frequent intervals

a review of what has been learned so far is a useful tutoring technique.

Also, if a pupil is struggling to master a learning-by-doing experience,

reducing the overall level of difficulty by simplifying the task can enhance

motivation, diagnosis, and remediation.

Selecting which strategy to use in transferring knowledge from ICAI

system to student is the third fundamental issue in explanatory efficiency.

Knowledge of the user's learning style from the student model is an important

criterion for selection, as is the choice between descriptive (textual) and

depictive (graphic) representation. For example, instructional strategies

with "visibility" (e.g,, illustrating programming processes step-by-step via a

simulated, simplified machine) are useful in teaching novices computer

programming languages (du Boulay, O'Shea, Monk; 1981). Higher order cognitive

skills (such as the ability to visualize what a program is doing) can be

strengthened using this approach (Lieberman, 1982).

A typology of explanations is important for a computer tucrr or coach in

choosing among a repertoire of possible strategies (Stevens and Steinberg,

1981). For example, the STEAMER system incorporates nine types of
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explanations--including physical-causal, information flow (feedback),

topological (connectivity of components), and attributional (state

changes)--in teaching students about navy propulsion plants. Each explanatory

category has its own characteristics which dictace an appropriate

instructional approach.

A theory of rhetoric (stating the explanation so that it will be

understandable) is vital for ICAI. Constructing explanations to minimize

complexity (through considering such aspects as focus of attention and

embedded discussions) is a structaral approach to rhetoric (Weiner, 1980).

Alternatively, NEOMYCIN uses an abstract (domain independent) representatation

of strategy to guide the .choice of which tutoring rule from its repertoire is

most appropriate in an explanatory situation (Hasling, Clancey, Kennels;

1983). (This is an extension of the GUIDON work covered in section three of

this paper.)

The Socratic tutor has been a powerful instructional model in ICAI. The

mixed initiative dialogue foe,..ered by this teaching strategy gives an

opportunity to refine the student model, pruning the tree of possible theories

the pupil might hold about a particular situation. The goals of the Socratic

tutor are to follow a domain-depenchnt script of knowledge (as discussed in

part three under the WHY and SCHOLAR systems), using production rules to

identify student misconceptions and to offer counterexamples which build a new

understanding (Stevens and Collins, 1980).

How much to say is the fourth fundamental issue in an explanatory

paradigm. In indicating pupil error, learner self-image and mot ..vation must

not be damaged. The instructional response must be at an al,iropriate level of

detail, neither so fine-grained as to be boring nor so general that the
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student is uncertain of its application to the problem at hand (Wallis and

Shortliffe, 1982).

A theory of hints is important here. Burton and Brown (1982) describe

four successive levels of hints in WEST which range from indicating a weakness

to describing in detail how to make an already indicated optimal move. The

student's response to varyinj. levels of explanation provides a useful

diagnostic mechanism for assessing how deep an understanding has been

attained.

Ideally, the intelligent coach or tutor would be capable of

selfimprovement, expanding and refining both its subject matter knowledge and

its explanatory strategies with accumulated experience. In some subject

areas, an ICAI system can be designed to acquire superior problem solving

approaches from its students (Kimball, 1982). Tutors based on production

rules can be equipped with a component which makes experimental changes in

teaching arproach, adding successful modifications as they are discovered

(O'Shea, 1982). However, the amount of improvement which can be gained for

complex and less structured subject matter is questionable.

Multiple questions for ICAI arise from research on the nature of

explanation. How much can traditional educational research on group

instruction be applied to individualized computer coaches or tutors (and vice

versa)? To what extent can intervention criteria such as relevency and

memorability be assessed independent of subject matter and student attributes?

Within what limits can typologies of explanation, theories of hints,

approaches to example selection, or rhetoric strategies be generalized to

other domains? What proportion of total instructional efficiency can be

attained via selfimprovement? These illustrative questions indicate the

range of issues raised by studies of teaching strategy.
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Conclusions

The teaching module is the least studied of the four ICAI components.

Expertise and communication research both are proceeding independent of

interest in intelligent tutors or coaches, and user emulation has attracted

more interest among cognitive scientists than have explanatory processes.

Also, sophisticated instructional strategies are likely to be useless unless

linked to a strong base of expertise and a powerful diagnostic model, so early

work has focused on these areas.

However, all the other components are useless without a teaching module

to integrate and coordinate their functions. Intelligent coaches and tutors

(unlike other AI-based educational tools) require a means of structuring

learning-by-doing to maximize efficiency and effectiveness. Traditional

educational research, with its focus 'In group training, has not supplied an

adequate theoretical framework for optimizing individual learning in

information rich environments. An increased research emphasis ul explanatory

strategies is vital for the success of ICAI.

Communications Module

Communications issues in ICAI largely parallel research themes in the

field of natural language comprehension and generation, which 4s a major area

within artificial intelligence. A review/synthesis of the many studies in

this field is beyond the scope of this paper. Instead, this section will give

a brief overview of those research topics which have special relevence to

intelligent tutors and coaches.

The focus will be on linguistic work, since non - linguistic input (e.g.,

mice and pull-down menus), while offering convenience in user interface

design, severely limits the depth of communication which can occur. In the
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near future, the means by which information is exchanged between student and

computer will likely continue to be non-vocal. While voice output for ICAI

systems is progressing, voice input 1- still a major technical challenge.

A general analysis or discourse iadicates the need for three types of

information in carrying on a dialogue (Winograd, 1977):

--knowledge about patterns of interpretation (to understand a speaker)

and action (to gmerate utterances) within dialogues (Faught, 1977)

--domain knowledge needed for communicating content

--knowledge of each speaker's intentions within the overall

communications situation (similar to the felicity conditions discussed

under the nature of learning)

These necessarily involve linking the communications module to the ICAI

system's expertise, student model, and instructional strategies.

For example, GUIDON (discussed in part three of this paper) uses

discourse procedures to indicate when a particular tutoring rule may be

appropriate for communicating about a domain rule (Clancey, 1982). The

communications module in this system has access to three levels of domain

knowledge: information used in expert performance, support data which explain

the justification for expert actions, and abstraction knowledge identifying

patterns in the performance knowledge. The student model incorporat "s

knowledge of the communications situation via an overlay representation of the

pupil, a s,_labus, and a dialogue continuity mechanism.

Beyond an analysis of discourse, the most fundamental issue in designing

-n ICAI communications module is language comprehension. From an artificial

intelligence perspective, this can be the most difficult technical problem in

a computer tutor or coach. Educational applications are particularly

challenging, for two reasons: First, the nuances in a response are vital in
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shaping the student model, so more than crude comprehension cf a statement is

required. The sophistication in analysis of utterances needed may be greater

for ICAI than for any other major application of natural language

comprehension. Second--unlike human instructors, who can interpret pupil

behavior through multiple indicators such as visual cues and tone of voice- -

the ICAI system must currently rely on one dimension of input. (In a few

years, hand-held physiological sensing devices may offer additional

information on states of consciousness and mood.) This limited sensing

capability makes the problem of assessing student understanding much more

difficult.

As its approach to language comprehension, SOPHIE uses a semantic grammar

to parse user input (Burton, 1976). Speed (a problem for computer-based

systems) can be greatly increased by focusing on the meaning of key words in a

response rather than attempting to understand the utterance syntactically.

This approach aids in dealing with linguistic ambiguities such as anaphoric

deletions (implied references to earlier parts of the dialogue) and ellipses

(omitted words tc be deduced by inference). (Part three of this paper

illustrates several of these points in its discussion of SOPHIE.)

However, more than semantic and syntactic expertise are necessary for

understanding a statement in natural language. Contextual knowledge of real-

world phenomena and common sense about standard types of occurences are vital

in comprehension. Representing this sort of knowledge in a computer is a very

difficult problem in artificial intelligence and may be a significant barrier

to the types f instruction that a tutor or coach can present.

Language gene ation, while still esallenging, is a less complex issue

witn fewer idiosyncratic issues in educational applications. When producing

utterances, planning to achieve communicative goals is a critical factor. The
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TELEGRAM (TELEological GRAMmar) system encodes discourse information in a

specialized formalism with linguistic knowledge and planning control

structures (Appelt, 1983). If a system has reason to believe that its planned

response may mislead the user, then "informing behavior" (identifying and

avoiding potentially confusing utterances) is a useful strategy (Joshi and

Webber, 1984).

All these types of research have implications for ICAI systems. What are

typical classroom patterns of interpretatic. and action for dialogues? Do

educational situations utilize discourse procedures different from those in

most communication situtions? To what extent do lack of contextual knowledge

and "common sense" limit the proportion of the curriculum whicli can be

communicated by intelligent tutors and coaches? What are the "informing

behavior" techniques used by e%?ert teachers? These questions illustrate the

range of issues which the communications module (a "service" function within

the ICAI system) imposes.

CAPABILITIES AND LIMITATIONS OF CURRENT ICAI SYSTEMS

As this discussion of major research themes indicates, much work remains

to be done :fore building intelligent tutors and coaches is well understood

or routine. On tne other hand, the feasibility of these devices has been

demonstrated by implementations such as those descrfl.ed in part three of this

paper, and significant progress has been made on many crucial issues.

Overall, what are major illustrative strengths and weaknesses of ICAI at

present?

Ore limit on the deployment of AI-based educational tools has slowly been

disappearing: small computers are steadily becoming less expensive and more

powerful. As a result, desktop machines with memory capaciiy and processing
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speed sufficient for ICAI are beginning to emerge (current system prices are

about five thousand dollars). While at present these computers are sold

primarily to businesses, as prices fall and as educational software capable of

using such power is developed, schools will begin to purcLase these systems as

the next generation of instructional tools.

The widespread dissemination via smaller computers of sophisticated ICAI

implementations such as STEAMER and SOPHIE is likely to increase interest in

computer coaches and tutors. Historically, the impetus to develop AI-based

educational tools has come from the military and industry, where training

costs are high and the consequences of low effectiveness are profound. More

fundillg may come from other sources as other groups within society begin to

realize that these devices can be useful and will become nffc:-dable.

Growing commercial interest in expert systems is also having a positive

impact on ICAI. Specialized software for knowledge engineering is

increasingly available, and funding Is expanding for research studies on the

nature of expertise. However, an expert computer problem solver requires only

mechanically optimized knowledge, while the representation of expertise in a

computer coach or tutor must include a "glass box" model and knowledge

sequencing. Thus, research on expert systems will not automatically provide

the full range of studies necessary.

Also, the realization that "in the knowledge lies the power" may reduce

the potential usefulness of ICAI devices and make their production for the

full range of curricular subjects a time-consuming and expensive process. The

understanding gained from subject-domain experts of what reconstructed

knowledge is most useful in building authentic knowledge will be valuable, but

attaining this understanding will require far more complex curriculum

development strategies than currently employed. If knowledge representations
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must be narrow and specialized, many individual coaches and tutors will have

to be created, each handling only a small portion of the curriculum.

Of course, by careful choice of topics, maximum generalization can be

achieved. For examp:e, SOPHIE's instruction on power amplifiers may provide

the foundation necessary for teaching most types of sophisticated electrolyte

troubleshooting. Nonethells, the deployment and integration of numerous

specialized tools is a less ambitious goal than the mure generic instructional

devices thought feasible in the early years of artificial intelligence

research.

As with knowledge representation, the research themes vital for the

communications module of an intelligent tutor or coach are of great interest

to the general fidld of computer science. Extensive commercial possibilities

for devices capable of language comprehension and generation also ensure

continuing research in this area. However, progress in linguistic

communication by computers has been slow, and the limited user interface

characteristic of current ICAI sys,ems may be the most difficult technical

hurdle to overcome.

These problems may restrict the range of subjects for which computer

tutors and coaches can be developed (since some types of content demand

sophisticated comprehension of student utterances by the instructor). In

addition, a limited communications format constrains educational effectiveness

by reducing user motivation and limiting the inf rences which the student

model can make. As perhaps the most demanding application of language

comprehension and generation, the evolution of ICAI is dependent on continued

progress in this area.

The explicitness required in all modules of a computer coach or tutor is

a mixed blessing for educators. Having to srecify operationally every detail



forces a deeper comprehension of subject matter, learning, teaching, ana

communication; this enriches the human instructional enterprise independent of

the development of ICAI devices. New models and metaph)rs, novel ways of

conceptualizing familiar problems, and a more profound understanding of the

control variables in educational effectiveness are emerging from studies of

AI-based tools.

However, the requirement of explicitness means that only an

intellectually rigorous production effort can develop effective computer

coaches and tutors. Every aspect of each module must be close to perfect if a

worthwhile educational product is to result. Hastily executed applications

will be of questionable value, and prototypes will require extensive testing

ana debugging before dissemination. This "all or nothing" characteristic is a

distressing attribute of ICAI, as intermediate stages of development will not

be directly useful in improving instruction (although indirect benefits from

knowledge that improves human teaching will be important).

Because traditional educational research has focused group

iLstruction, little is known about some individual learning characteristics

vital in developing the student and pedagogical models. The long lead times

from conceptumAzing _1 study to disseminating its results mean that research

begun today will reach fruition about the time that computers sufficiently

powerful for ICAI are affordable by schools. However, few investigators in

education have shifted the focus of their work from current concerns to this

emerging new paradigm for instruction, despite attempts by cognitive and

computer scientists to promote such efforts.

Unfortunately, researchers in artificial intelligence and cognitive

science have often not followed their own precepts on expertise in studying

student and pedagogical representations. Rather than using knowledge
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enrineering to extract authentic knowledge for veridical situations from human

teachers, many ICAI studies build elaborate speculative edifices on theories

derived from smallscale, ad hoc observations. The high cost of better

designed research and computer scientists' lack of familiarity with

precollege instructional settings contribute to this problem.

Difficulties due to inadequate empirical research will intensify as the

focus of investigation shifts to earlier developmental levels where

generalizations from college and industry populations are less likely to

apply. For example, some pupils may have a problemsolving paradigm which is

so divergent from an expert strategy that overlay, differential, and

perturbation student models are all inadequate. Largescale studies to

indicate the number and type of fundamental mindsets individual learners bring

to a given subject would be of great value in producing computer coaches and

tutors, yet little research is occuring in this area. Both a refocusing of

instructional investigation on emerging issues and increased collaboration

among educational researchers, artificial intelligence specialists, and

cognitive scientists would help to improve the quality of current ICAI

development.

Overall, increasing availability, decreasing cost, and growing commercial

interest in AI based tools are enhancing the potential of ICAI. Limits on the

sophistication of communications modules, on the scope of subject domains, and

on current understanding of individual learning all are constraining the

effectiveness of computer coaches and tutors. The explicitness required for

constructing intelligent devices makes progress more difficult and time

consuming, but enriches the theoretical perspective which emerges.
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Conclusion

Early resea -hers in AI were very optimistic about how quickly computers

would be competitive zAth humans in many aspects of intelligence. Over the

past two decades, some major goals (such as the General Problemsolver) have

been abandc.ned as infeasible; others once thought easy are now assessed as

very difficult (e.g., machine translation). Thus, some degree of scepticism

about claims of AI rapieqy revolutionizing educational practice seems

appropriate.

However, the capabilities discussed so far in this study are conservative

claims of performance, and progress in these areas of AI research has been

steady, if slow. Moreover, economic constraints on the effectiveness of the

traditional model of instruction are gradually eroding quality. A

cost-effective pedagogical approach based on teacher/tool partnerships (see

section five) may be seen as an increasingly attractive alternative to

spiraling costs. What are the potential 1ng range changes in schooling which

may result from ICAI?
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SECTION V: THE POTENTIAL OF INTELLIGENT COMPUTER ASSISTED INSTRUCTION FOR

EDUCATION

We find ourselves divided on the question of ICAI's potential

contribution to education--divided individually rather than severally. That

is, each of us is of two minds. On the pessimistic side, several factors

suggest that the near-term contribution nay be limited or even negligible:

-- Design, theory, and aspiration have greatly outdistanced concrete

achievement in the field. The definition of an ICAI system in terms

of four modules (expertise, student modeling, teaching, and

communication) frequently turns out to be more theory than actuality.

Many systems reported in the literature are only partially developed;

one or two components are of principal inter.est to the developers,

and the others are .eft in the conceptual or rudimeitary prototype

stage. This is understandable--perhaps even necessary--when the

system is being built for research purposes, but does suggest that

surmounting difficulties involved in creating complete. systems will

demand an even greater inve .ment of dollars, time, and talent than

many existing systeru3 have received.

-- Existing systems are almost completely domain-specific. Tt-re have

been some efforts to abstract generalizable shells from a f( of

them, and these efforts should certainly be expanded, but at this

point developing a system in one domain makes at best an indirect

contribution to the development of additional systems.

-- Because ICAI systems are both expensive and domain-specific, the

costs of creating a set of systems spanning the entire curric'ilum in

the mljor academic subjects appears prohibitive.

-- Technical obstacles also stand in the way of broad application. ICAI

seems most applicable to subject matter domains where knowledge is

well-defined and of no more than moderate complexity. In areas where

ambiguities and subtleties abound, the challenge appears
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exponentially more difficult. As suggested by the definition between

"education" and "training" below, this appears to rule out developing

systems to teach, stand - alone, a great deal of the K -12 curriculum.

-- The natural language problem has proved daunting, a far greater

challenge than many AI experts had guessed. One ICAI researcher told

us flatly, "natural language is dead," and argued that a search for

alternative interface modes--especially on the input side--is

essential if ICAI is ever to be practical. Others believe that

natural language research .Ls on the verge of a breakthrough. None of

the present authors is an expert in the are-, but we incline to

skepticism on this joint. Where sensitivity to nuance is not

required and the scope of communication is narLow, natural language

interfaces may prove feasible in cost and technical terms, but the

investments required for nuance-sensitive and broad-gauge

communication seem likely to prove prohibitive for the K-12 education

system in the near future.

-- Beyond all of the difficulties entailed in the levelopment

of ICAI, great difficulties of implementation .1....,enc themselves.

Tae history of this century's efforts to improve education through

technology is not encouraging. In fact, our experience with film,

audiotape, instructional television, and language laboratories--not

to mention the experience to date with computers--is rather.

dispiriting. Because of its potential for direct substitution of

teacher activities, ICAI would seem to present a far greater

implementation challenge than any of these.

In light of these considerations, some may find it a tribute to our

capacity for hope rather than a result of realistic analysis that we persist

in believing that ICAI does Lave great potential to improve education.

Nevertheless, we are convinced that the method of study demanded by

ICAI--careful, deep, domain-specific analysis of subject matter and of

children's errors and advances in learning it, all tied to precisely specified

teaching interventions--has the potential to transform research on teaching
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and learning, to make educational improvement both more scientific and more

productive than it has been to date.

Further, we believe that none of the obstacles and drawbacks enumerated

above need prove fatal to the development and implementation of powerful ICAI

systems i. tae K-12 education arena--if certain conditions are met. First,

topics to be addressed through ICAI will have to be selected judiciously. Not

only must they be in subject areas where knowledge is well-defined and limited

in complexity, but they must also be chosen strategically to help students

over obstacles that stump or discourage large numbers of them so that ICAI

systems justify their cost be sharply increasing productivity. Second, for

the foreseeable future, ICAI systems will have to make limited use of natural

language, relying instead on alternative flexible, user-friendly interfaces.

Third, increased attention will have to be given to approaches and techniques

that permit generalization from one domain to neighboring domains and other

means of reducing development costs. Fourth and most important, a large

scale, national research program will have to be mounted.

If these conditions are met, what kinds of benefits might we expect from

ICAI? To answer this question, we have created an extremely optimistic

15-year scenario. Such a chronological horizon provides a context within

which three- to eigi.,:-year strategic plans can be evaluated. A high degree of

success in developing ICAI is hypothesized: that is, a dedicated national

research program, the emergence of a collective school market, and major

societal requirements for adult retraining combine to produce a rapid

evolution of AI-based instructional devices.

Lt this scenario, by the year 2000 the types of teaching functions

available /la information tools at a cost comparable to human instruction

include:
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ICAI

--mixed initiative, dialogue based tutors

--complex, interactive games and simulations with embeddel coaches

Other Al

--"microworlds" (limited alternative realities) with domain dependent

languages to facilitate exploration (e.g., LOGO)

--"idea processors" which allow the interconnection of concepts in an

elaborate network (van Dam, 1984)

--sophisticated "empowering environments" for artistic, musical, and

literary expression (Brown, 1983)

--surrogate travel and experience via interactive telecommunications and

videodisc

--powerful, linked data access and management devices

These technologies might ir.clude such capabilities as voice input, monitoring

the user's state of consciousness through physiological sensors, and screen

control via eye movement trackers. Some as yet unconceptualized teaching

functions may also be available.

This forecast assumes steady progress in both the computational and

cognitive research necessary to enable devices of this sophistication. Over

the next fifteen years, the rapid evolution of information technology hardware

seems certain to continue (although some significant technical limits may be

reached by the late 1900s). The processing power of current computers will

increase by at least two orders of magnitude at constant cost. External

memory will be very cheap; internal memory may involve significant expense,

but will be much less costly than today.

Large, high resolution flat monitors will be reasonably priced for

educational purposes. Delivering huge amounts of .formation over distance

will be inexpensive, and high speed, high quality laser printers will be
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readily available. The universality of digital code will allow small devices

which combiue the attributes of the telephone, television, videodisc,

computer, and xerox machine. Software tools which allow the construction of

very complex courseware will be routinely used.

In the next fifteen years, the availability of the knowledge about

coLnition needed for constructing sophisticated ICAI devices is less certain.

Increasing our understanding of domainindependent thinking skills (i.e.,

problem solving, information retrieval), metacognition (e.g., learning from

errors), and conceptual restructuring (paradigm shifts) will require time, a

critical mass of research expertise, and sustained funding. Hardware and

software development will be driven by forces external to education, but

pedagogical and psychological research are more dependent on the emergence of

both a national mandate for strong universal education and an economic

incentive for meeting this need via information technology.

Societal pressures will be influential in determining not only the

resources available for developing ICAI technology, but also the purposes for

which these devices are used. In general, the goals and structure of schools

are strongly shaped by external forces; Sputnik, the Civil Rights movement,

and recent economic malaise all have caused more educational change than the

past century of internal innovations. Over the next decade, a cultural

conventional wisdom on how to use the new information technologies will

emerge. Whether the predominant pattern is "automation" or "person/tool

partnerships" will be very influential in shaping tbl evolution of ICAI.

Some see the information technologies as best suited to producing robots,

dedicated intelligent machines, and other artifacts which can work without

human operators. Computer tutors and coaches fit into this category of

"automation" (substitution of technology for people to gain efficiency and
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effectiveness). If applied to the economy overall, this approach yields

"superindustrialization."

In such an extreme future, national prosperity would continue to depend

on heavy standardized production inAistries (such as steel and automobiles.

At present; American companies are at a disadvantage in ..ne international

arena because of rising labor costs, natural resource depletion, expensive

energy, high interest rates, and technological obsolescence. Through

automation based on very sophisticated information technologies, the U.S.

could attempt to increase productivity enough to become aominant again in

these Traditional markets.

Researchers have analyzed what such an economic development policy might

mean for education. The occupad_onal mix in a superindustiralized society

would have a small percentage of scientists, engineers, and policy setters;

few middle level professions; many low level waiters, janitors, and service

jobs; and large numbers of unemployed sustained by income redistribution.

Governance would shift toward technocracy (decision making by expertise)

rather than democracy. The major purposes of ICAI in this future might be to

screen for small numbers of talented elite while training the vast majority of

students for a menial social status; other AI-based devices would aid in

preparing ...nose few workers needing advanced cognitive skills.

An opposite extreme future would involve America's making a transition to

a knowledge-based economy (moving beyond automation of industrial processes to

value added crafting of information). Each item produced for the global

marketplace would be customized to the needs of its owner Lather than

mass-produced to some average set of specifications (the equivalent of having

all one's clothes tailored). Such a strategy for economic evolution would

require the use of information technologies predominantly in "person/tool
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partnerships" (a human operator and an information device together

accomplishing more than either could alone). Some unemploymen_ might occur

during the transition to this knowledge-based economy, but long term many high

skill jobs would be available. Governance would shift coward more

decentralized forms of decision making as information networks lessened the

need for elaborate systems of representing each citizen's interests.

Analysts have studied what the implications of such developments might be

for education. To provide the creativity and flexibility necessary for custom

design of :oducts, workers would need higher order cognitive skills

complementary to the strengths of a sophisticated information tool. As its

portion of the partnership, the technology would accomplish most types of

standardized problem solving, while human operators would be responsible

primarily for problem recognition and responding to unusual situations.

As the information tools become capable of many functions now taught as

the foundation of vocational advancement, creativity, flexibility, decision

making given incomplete data, complex pattern recognition, information

evaluation/synthesis, and holistic thinking would become central occupational

skills. A new definition of human intelligence would emerge, based on what

the new technologies lack.

If people were hired on the basis of these higher order cognitive

characteristics, new types of authority structures would evolve in response,

moving beyond "following orders" to take advantage of workers' expanded

attributes. A trans-hierarchical approach to decision making could

decentralize power and responsibility while retaining speed and

accountability. Cooperation, compromise, and group decision making abilities

would become important universal skills.

With the power of the technology continuing to double every two years for
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the same cost, tools would be frequently redesigned, leading to the need for

massive adult retraining as occupational skills rapidly shift. The whole

range of AIbased devices would be universal educational aids in such a

future, since all students would need the sophisticated knowledge these tools

can impart. Funding for research in cognition to enable the development of

complex instructional devices would be more likely in this future than in the

superindustrialized scenario.

Thus, the predominant cultural pattern of technological usage America

chooses (automation versus person/tool partnerships) will strongly shape the

goals of schooling. What may these large scale changes mean for individual

teachers, students, and administrators? How may the process of classroom

learning alter?

Implications For Teachers

As ICAI devices evolve, the nature of education will gradually shift.

Historically, the pendulum of pedagogical innovation has swung between

extremes of "structured instruction" (teacher as source of all knowledge) and

"unstructured learning" (student obtains information via trial and error

experience). To maximize the effectiveness of the new instructional

technologies, much of the curriculum may be taught through "structured

learning." In this approach, the pupil discovers knowledge within an

organized, informationrich environment. The challenges faced are sequenced

and tailored to individual needs, with help from teacher or technological

device available as required.

The traditional model of instruction is oriented to groups; the teacher

spends most of his/her time speaking to the needs of the middle sixty percent

while trying to keep the top and bottom students peripherally involved. The
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efficiency of this approach is low for any material which involves mastering a

standardized problem-solving technique, as each of twenty or more pupils may

be at a different point in learning the algorithm. As a result, skills such

as division, which could be acquired in a month by a developmentally ready

learner working one-on-one with a skilled teacher, can take years of classroom

practice to achieve.

Group instruction may be the best way to teach some types of higher order

thinking and communication skills, where interaction and pooling of ideas are

important. Even in this situation, however, optimal class size varies by type

of material, and students may have widely differing masteries of the basic

skills which are a necessary foundation for complex thought. This greatly

reduces educational productivity and increases disparities in pupil

performance.

Unstructured learning situations such as discovery learning and

apprenticeships, while alternatives to the traditional model, have

historically also had efficiency problems. Students need a series of

exploratory environments which offer gradually increasing difficulties, as

well as external intervention to aid in conceptual restructuring when a dead

end is reached (Brown, 1984). Many of the post-Sputnik science and math

curriculum reforms failed because neither pupils nor teachers were well

prepared to filter knowledge from unstructured environments heavily loaded

with information.

Thus, classroom instruction has been hampered by the teacher's

powerlessness both to tailor the size of the group to the content being

learned and to intervene on an individual basis as needed. ICAI devices offer

a way of changing this situation, since for some portions of the curriculum

these could provide stand-alone individual and small group instruction. For
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all material involving a limited range of right answers, mixed initiative

tutors and coaches could guide pupils to the right problem-solving technique,

recognizing errors, providing remedlation, and modeling expert performance as

requisite.

Imagine dividing the curriculum into two parts: "training" (limited range

of right answers) and "education" (multiple right answers, answer unknown,

human relations). ICAI devices cannot, stand-alone, provide "education"

(although AI-based tools would be valuable supplements to the teacher); they

cannot recognize the full range of right answers or provide human interaction.

Technological tutors and coaches could substitute for people in "training"

students, however, freeing the teacher to work with pupils flexible and giving

learners a more uniform preparati4in basic thinking skills. This in turn

would increase instructional productivity in group situations, so both

training and education would become more efficient.

ICAI also increases quality in several types of instruction beyond even

what a skilled teacher could offer. A human instructor cannot simulate a

device or a game situation or an alternative reality or surrogate travel as

convincingly as can information devices. Nor can a siligle person become

expert in all the types of abstruse knowledge from which gifted students might

profit. Also, symbolic manipulation (whether in graphic, literary, musical,

or numeric form) is a strength of computers; expecting teachers to compete is

like pitting John Henry against the steam engine. For many parts of the

curriculum, a person will always be superior to a machine, but--even if costs

were equal--in some situations AI-based devices are optimal.

Indirectly, the information technologies will change what teachers must

know about their subject matter. "Basics" (such as arithmetic and algebraic

manipulation in math or spelling in composition) will continue to be taught,

97

1 0 0



but only to the mastery level required as a foundation for higher order

thinking and usage. Information tools such as calculators and spelling

checkers will provide the performance proficiency now required of people. In

general, descriptive and declarative (what) knowledge will be deemphasized

relative to procedural (how) knowledge. Information technologies require this

type of human expertise to maximize their usefulness, and ICAI gives a means

of imparting process skills efficiently.

In addition to mastering a different level of knowledge about their

subject, instructors will require an expanded range of teaching techniques to

take full advantage of partnerships with tools. Human skills need to

complement ICAI devices, accomplishing what they cannot. Teachers, regardless

of subject area or grade level, must acquire the following attributes if the

benefits of instructional technology are to be maximized:

--skills in facilitating student learning through individual and group

interaction in information-rich environments, possibly including

multilevel age groups and flexible time allocations (Dede and Adams,

1984)

--an understanding of what stand-alone instructional tools can and cannot

accomplish ("training" vs. "education"); a sense of when an information

device may be superior to human pedagogy

--greater procedural knowledge of the subject area; an ability to tailor

the size of the instructional group to the type of content being

communicated

--higher order cognitive skills such as creativity, flexibility, decision

making given incomplete data, complex pattern recognition, information

evaluation/synthesis, and holistic thinking (the new definition of

intelligence)

--the ability to use sophisticated diagnostic and assessment techniques

to evaluate student attainment of complex cognition

Skill in operating and maintaining the new instruction tools is only a small

part of this list. The indirect outcomes of ICAI (empowering a new role for
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teachers) are greater than the direct effects (substituting for some types of

instruction).

Beyond these imp15::ations of ICAY, the use of information technologies in

general will alter the role of teachers in several ways. Much of the boring,

repetitive, time-consuming drudgery of record keeping will disappear as

sophisticated, linked data access and management tools become routine in

school districts. The teacher's role In promoting equal educational

opportunity will increasingly include tailoring instructional devices and

courseware to special needs. When a pupil spends significant amounts of time

working alone with an information tool, the teacher may intensify that

student's interpersonal interaction the remainder of the day to compensate for

affective experience lost (Dede and Gottlieb, 1985).

Should the predominant cultural pattern of information technology use

evolve into person/tool partnerships, the purpose of instruction would shift.

The major goals of schooling would become:

--on the cognitive level, developing in each student the new definition

of intelligence discussed earlier

--on the affective level, building skills in cooperation, compromise, and

group decision making (modeling in classrooms the trans-hierarchical

authority structures emerging in the workplace)

--on the normative level, socializing pupils to the complex citizenship

roles of a knowledge-based society

More sophisticated assessment techniques than the multiple choice, paper and

pencil methods presently used would be needed to monitor progress toward these

goals.

Teacher skills in flexibility, creativity, and decision making given

incomplete data would lead to shared allocations of power and responsibility

with school administrators. Interactions with parents and community would

increase via commercial telecommunications networks interconnected throughout



neighborhoods. Above the primary level, a significant amount of instructor

time might be spent retraining adults for worker tool partnerships as part of

the societal economic transition.

Overall, whether or not America moves to a knowledgebased society, the

impacts on teaching of AIbased devices will be profound. To accomplish the

changes discussed above, constant inservice development of instructors will be

needed, since pedagogical skills will become increasingly more complex as the

information tools continue to evolve. Differential compensation based on more

specialized teacher roles and skills will likely be implemented, necessitating

a shift current union approaches to occupational enhancement. A different

type of person will be needed (and attracted to) teaching; pay competitive

with other demanding intellectual jobs, respect from the society, and better

working conditions will be essential in recruiting such people to the

profession. (Dede, 1981).

If all this instructional innovation were to occur, the gains in

educational productivity and effectiveness from ICAI and AIbased tools could

be very significant. "Training" portions of the curriculum might be

accomplished in onethird or less of the time now required. "Education" of

students would be approximately twice as efficient. However, unless the total

time pupils spend in school were diminished in response to this greater

efficiency, overall costs of instruction would likely increase, because of the

capital investment required to enable ICAI development and the enhancement of

the teaching profession needed to maxiztze its usefulness.

The degree to which such a shift in the traditional educational model

occurs will be determined primarily by how much citizens believe that

universal high quality education is an essential long term investment. This
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in turn will depend on whether the U. moves toward a superindustrialized or

a knowledge-based economy.

Implications for Learners

In structured instruction, with the teacher the focal point of the

classroom, students have little input into their education. Critical

decisions about content, sequence, time, and priority have already been made.

Pupils have few opportunities for learning by doing, asking questions,

inventing ideas, linking formal and experiential knowledge, doing research, or

making decisions.

ICAI devices offer an opportunity to change this situation without the

inefficiencies of completely unstructured learning. Mixed initiative,

dialogue-based tutors would give pupils the chance to interact one-on-one,

simultaneously learning the subject and mastering skills in questioning and

researching. Interactive games and simulations with embedded coaches build

the student's experience, linking theory with practice and decision making.

To the extent that ICAI is designed for small group usage, skills in

cooperation, compromise, group decision making, and communication are enhanced.

The learner's having the chance to play a more active role in shaping his

or her education is fundamental both to motivation and to eventual responsible

functioning as an adult. Also, the efficiency in learning which ICAI provides

could enhance the self-image of many students whose idiosyncratic needs retard

subject mastery in traditional group settings. Moreover, procedural knowledge

and the new definition of intelligence can best be acquired through

customized, hands-on experiences which ;-.eachers without AI-based tools would

be hard pressed to offer.

The relative independence of ICAI from the teacher and emerging
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telecommunications links among home, school, workplace, and community offer

opportunities to tailor education to the developmental needs of students.

Young children are capable of far more learning than schools and families

currently promote. Structured education from birth by a combination of people

and information tools could unlock a vast amount of human potential difficult

to achieve with later intervention. To capitalize on this developmental

"window," families and teachers could work in close collaboration, using ICAI

devices to decentralize and coordinate the delivery of instructional services.

Also, in a similar manner students at more advanced developmental stages

could spend considerable time outside of school in community and workplace

environments. During the years around puberty, for example, children have

little interest in formal academic subjects compared to their curiosity about

practical life skills and self-knowledge. Older pupils could begin to clarify

vocational goals by experiencing work alternatives through part-time

apprenticeships. Such learning activities would both contribute to society

and reduce the number of teachers needed at those grade levels (allowing an

intensification of human resources in early childhood, when this is most

needed).

Of course, stand-alone instructional devices could provide only a small

fraction of a student's education. Children need concrete experiences to

build their thinking skills, and many youngsters are capable of only limited

motivation and concentration apart from adult supervision. Some pupils, too,

will have learning styles or special needs which respond only to human

instruction. For all students, emotional development and personal growth

necessitate large amounts of affective interaction without technological

intermediation. Moreover, while "training" can be done with ICAI largely

independent of a teacher, "education" cannot.
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Overall, however, AI-based devices have enormous potential to empower

learners. If all the innovations discussed above were implemented, graduates

of secondary school would be more adept than most present adults in higher

order thinking, emotional maturity, working with others, decision making,

accepting responsibility, citizenship, practical life skills, realization of

self-potential, and dealing with uncertainty. ICAI is necessary to the

realization of such a future, but is certainly not sufficient.

Achievement in academic subjects by average students at the end of high

school might increase to the equivalent of a senior in college, and all pupils

would attain close to their individual developmental potential. Some of these

results would be direct outcomes of the skills ICAI can convey; most would

occur only if the overall educational flexibility that information technology

could create were realized.

Implications for Administrators

The adoption of AI-based devices in schools would require continuous

inservice development of teachers in response to the evolving attributes of

information tools. Many educational changes have failed because instructors

were not prepared for their usage and no incentive was given for innovation.

Especially with demographic and economic forces creating an aging teacher

population in many schools, persuading staff to shift from decades of using

the traditional classroom approach could be very difficult. Teachers are

likely to be particularly threatened by ICAI, which can substitute for human

instructors in some applications.

Therefore, administrators have a number of leadership challenges in

facilitating such a transition. If the evolution of a new instructional model

is to be successful, institutional reward systems and budget allocations must
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be gradually reworked to promote professional development and innovation.

Retirement policies may be a means for balancing the mix of older and younger

staff. Teachers will respond better to using a technological approach if the

goals of education shift toward the new definition of intelligence, which

requires intensive human instruction as well as the use of ICAI. Also, to the

extent that schools adopt transhierarchical authority structures with shared

power and responsibility for decisions, teachers will feel less threatened by

uncontrolled change.

Implementation of all these strategies will require administrators adept

at leadership as well as management. One potential technological aid in

daytoday operations is the knowledgebased (expert) system, one of the first

commercial applications of artificial intelligence. Computers can give advice

comparable in quality to internationally recognized experts, but this skill is

limited to narrow, well understood domains where common sense, emotions, and

human experience are not important factors.

Having electronic guidance available when problems arise in specialized

areas of budgeting, organizational design, or facilities usage may be very

useful for administrators, especially when these tools are coupled with

sophisticated data access devices. Educators protentially are a large enough

market that such knowledgebased systems will likely be available in the next

decade. However, managers will need to be skilled in interpreting.the advice

given and deciding what to do. Schools would not prosper if run by a

committee of electronic experts; human judgement is essential in leading any

service organization.

Just as ICAI can substitute for some types of teaching, "intelligent"

data management devices could eliminate a substantial proportion of the

traditional middle management role in education. Part of the administrator's

104

107



, function historically has been the collection and compilation of information

to be passed on to higher level decision makers. Emerging technologies are

increasingly becoming able to accumulate and aggregate data largely

independent of human direction. This allows top policy setters direct access

to information about every detail of the organization; developing ways to

synthesize this enormous amount of data into "control variables" 'which improve

the effectiveness of schools will be an important challenge.

Thus, administrator/tool partnerships will gradually change the nature of

educational management. Sophisticated practices comparable to those in other

service industries will become routine. As paperwork and data gathering

diminish because of automated record keeping systems, the administrator will

become more active in instructional leadership and in personnel management/

assessment. This will require new skills and a different career lattice, as

well as continual inservice training comparable :n scope to that of teachers.

(Dede, 1984).

Implications for Researchers and Developers

Computers are altering the nature of educational research by changing

methods of data collection, models of cognition, experimental methodologies,

and approaches to assessment. Instructional devices can unobtrusively and

cheaply measure key variables such as student time on task, response time to

questions, percentage of errors, patterns of mistakes, and learning sequences

chosen. As a result, previously unobtainable information about group

performanc can be garnered as a byproduct of instruction without elaborate

henun -:tc,:rdkeeping. Also, inexpensive, decentralized collection of student

ea 'ae settings can add to diagnostic knowledge (Dede and Gottlieb,

is,

105 108



Computers enable more powerful experimental methodologies, as variables

in an instructional situation can be altered one by one under the exact

control of the investigator. The sophisticated training imparted by computer

coaches and tutors will require evaluation by more complex forms of assessment

than the multiple choice, paper and pencil tests currently used. Research

into higher order cognitive skills will become increasingly important; and new

models of thought, learning, and teaching emerging from artificial

intelligence may initiate a scientific revolution in instructional theory.

From all these changes, an applied educational science based on cognitive

psychology, artificial intelligence research, ergonomics (studies of

human/machine partnerships), and pedagogical theory could emerge.

The nature of curriculum development will also shift as ICAI becomes a

major educational tool. Producing a quality courseware package for computer

tutors and coaches will cost millions of dollars; a prohibitively expensive

figure unless spread over a large population of students (in which case

instruction can be delivered very cheaply). Thus, curriculum development for

AI-based tools will occur at the regional or national level rather than

locally, and millions of pupils may learn from the same stand-alone materials.

Conclusion

This description of potential chances only scratches the surface of the

transformation which may occur. The usage of AI-based educational tools will

also affect the roles of teacher trainers, instructional agents external to

the school, and educational policysetters. Moreover, demographic,

technological, political, cultural, and economic shifts unrelated to the new

information tools will mold the ways ICAI and AI-based devices are used (Dede,

1983).
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For example, the emerging biotechnologies will alter occupations and will

pose difficult ethical challenges for which citizens must be educated. The

erosion of the nuclear family may continue, with alternative interpersonal

networks emerging to take its place; this will affect the needs pupils bring

to classrooms. Immigration and migration will change the nature and size of

student populations, and the mix of age groups needing instructional services

will alter, shifting the major clientele for which ICAI devices will be

developed.

Continuing national economic woes may place pressure on the traditional

model of schooling, forcing extensive adoption of innovations which reduce

costs. Societal instability and change will make planning more difficult and

may affect the willingness of citizens to make long range investments in

education. Over the next fifteen years, all these forces will_interact in

determining the evolution of artificial intelligence applications in schools.

Within a generation, the new information technologies seem likely to

reshape many aspects of our lives. Whether this change will be positive or

negative depends on the choices we make now. AI researclirs are using

computers to study how both people and information tools can gain greater

control over their environment by intelligent actions. Because humans and

computers have different cognitive strengths, a partnership between the two

may be the best way to navigate the challenges of the next several decades and

reach a bright future.

What happens as intelligent tools are infused into education will be

vital in determining the quality of life fifty years hence. If ICAI is used

to its full potential, the schools will develop a generation of adults well

equipped to direct a knowledgebased society. If information tools are

misused--or unused--the outcome is less likely to be positive. Thus, by
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refocusing their efforts to exploring this new model for instruction,

educational researchers can play a central role in shaping what is to come.
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